
Research Statement—sarah-marie belcastro

I think of myself as a semi-generalist because I have knowledge and interests ranging across geometry,
topology, algebra, and discrete mathematics. My graduate training was in algebraic geometry and I now
concentrate on topological graph theory, but I also do research in other subfields of mathematics. What
unifies my seemingly disparate work is a discrete or combinatorial perspective (e.g. using surface invariants
to think about embedded graphs, computing knot polynomials recursively, or considering algebraic surfaces
expressed in terms of convex polyhedra). This document describes my work and interests in mathematics
(topological graph theory, algebraic geometry, and other subfields) and interdisciplinary fields (mathematics
and fiber arts, feminist philosophy of science, mathematics and dance, and mathematical pedagogy). In
the interest of saving space, not all of my publications are mentioned here or on my CV.

Part I: Mathematics

Topological Graph Theory

I study networks of vertices and edges, called graphs, and how to draw them on various surfaces (see
Figure 1) without edges crossing (see Figure 2). A major open question in the field is the least number

Figure 1: A sphere and torus above a 2-holed
torus, adjacent to a Klein bottle.

Figure 2: The graph K5 must have edges crossing
when drawn on the sphere (left), but can be drawn
without edges crossing on the torus (right).

of holes needed in a surface in order for one to draw a given graph there. I often investigate how few
colors are necessary to color the edges of certain graphs such that no two edges of the same color touch.
Interestingly, this can be influenced by the surfaces on which one can draw a graph without edges crossing!

A graph is composed of vertices and edges, where the combinatorial data thereby encoded is adjacency
of vertices. Any graph can be drawn without edges crossing on some topological surface; such a drawing
is called an embedding and introduces the additional structure of faces. It is desirable that all faces be
open topological disks, and if so, the embedding is a cellular embedding. Topological graph theory is
concerned with the same sorts of questions as ordinary graph theory, but focuses on the interplay between
an embedding surface and other properties of the graph or class of graphs under study.

My interest in topological graph theory began in 2001, when I became aware of Grünbaum’s Conjecture
(1969). It says that every 3-regular graph polyhedrally embeddable on an orientable surface is 3-edge
colorable. (A graph is polyhedrally embeddable on a surface if it can be embedded with no face using
an edge twice and no two faces sharing more than one edge.) The openness of the conjecture struck me,
because while the Four Color Theorem implies that every 3-regular graph on the sphere is properly 3-edge
colorable, in thirty years no meaningful progress had been made for n-holed tori.

As I learned more, I became increasingly fascinated by examining graph coloring through topology and
began to do research on edge-colorings and on embeddings of graphs on topological surfaces other than
the sphere. Since it was posed, there have been significant contributions to the literature on Grünbaum’s
Conjecture. By Vizing’s Theorem (1964/5), it is known that every 3-regular graph is either 3-edge colorable
or 4-edge colorable, and a snark is a 4-edge colorable 3-regular graph of girth (smallest cycle length) at
least 5 that is cyclically 4-edge connected. Only two snarks were known to embed on the torus until 2004,
when Kaminski and I exhibited infinitely many snarks that embed on the torus and 2-holed torus with dual
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edge-width two [4]. That same year, Mohar and Vodopivec showed that for each g ≥ 3 and g = 1, there
exists a snark with a polyhedral embedding on the nonorientable surface Ng. (The case g = 2 was addressed
by Liu and Chen in 2012, and I add to this in [1].) In 2007, Kochol announced a genus-5 counterexample to
Grünbaum’s Conjecture (built from a snark in [4]); at the same time, Albertson, Alpert, Haas, and I proved
that toroidal triangulations of chromatic number other than 5 have Grünbaum colorings (dual to 3-edge
colorings of 3-regular graphs), thus affirming Grünbaum’s Conjecture for most toroidal triangulations [3].

What follows is an indication of some of the many problems/questions in which I am interested.

• There are many open questions related to Grünbaum’s Conjecture. Does the Conjecture hold for low-
genus orientable surfaces? Does it hold for all graph embeddings with sufficiently large representativity?

• We could consider generalized Grünbaum colorings, in which non-facial triangles also use three edge
colors. Which Grünbaum-colored embedded triangulations do not have a generalized Grünbaum coloring?

• Gottlieb and Shelton showed that there exists a Grünbaum coloring of a planar triangulation with
all color-induced subgraphs connected if and only if the triangulation is even. What other properties of
a triangulation, or of the dual cubic graph, force what structure on color-induced subgraphs (and vice
versa)?

• There are a number of other questions in which I am interested, including topics such as snark family
genera, the effect of graph products on genus, using homology to get genus bounds, and edge-coloring
toroidal buckyballs.

Topological Graph Theory Publications

[1] Snarks on the Klein bottle, Australasian J. Combinatorics, 65(3) (2016), 232–250.

[2] Triangle-free Uniquely 3-Edge Colorable Cubic Graphs, with R. Haas, Contributions in Discrete

Mathematics, 10(2) (2015), 39–44.

Using results from [5], we construct infinite families of triangle-free uniquely 3-edge colorable 3-regular
graphs. Our nonplanar examples are the first found in at least 30 years; we also bound their genera.

[3] Grünbaum colorings of toroidal triangulations, with M. O. Albertson, H. Alpert, and R. Haas, Journal
of Graph Theory 63(1) January 2010, 68–81.

[4] Families of dot-product snarks on orientable surfaces of low genus, with J. Kaminski, Graphs and

Combinatorics 23(3) June 2007, 229–240.

We show that any snark that embeds on Sg with a noncontractible cycle of Sg that intersects the
graph in exactly two edges will generate an infinite family of snarks on Sg.

[5] Counting edge-Kempe-equivalence classes for 3-edge-colored cubic graphs, with R. Haas, Discrete

Mathematics, 325 (28 June 2014), 77–84.
and Edge-Kempe-equivalence graphs of class 1 k-regular graphs, with R. Haas, Australasian J.

Combinatorics 69(2) (2017), 197–214.

For an edge-colored graph G, associate a graph KE(G) with vertices corresponding to edge colorings
of G and edges connecting two edge colorings of G that differ by an edge-Kempe switch. We give
some results on the structure and number of components of KE (G) when G is class 1 and k-regular.

[6] Parsimonious edge colorings on surfaces, Elec. J. of Graph Theory and App., 6(2) (2018), 306–309.

I have weakly extended a result of M. O. Albertson and R. Haas on edge-coloring planar graphs to
graphs on other surfaces.

[7] 1-factor covers of regular graphs, with M. Young, Disc. Applied Math., 159(5) March 2011, 281–287.

This paper classifies those 3-regular graphs for which every covering by 1-factors reduces to a proper
edge-coloring, and shows that there are finitely many (k > 3)-regular simple graphs with this property.
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[8] Domino tilings of 2× n grids (or perfect matchings of grid graphs) on surfaces, preprint in revision.

We present an elegant and elementary approach to enumerating edge-labeled perfect matchings of
2× n grid graphs on topological surfaces.

[9] Color-induced subgraphs of Grünbaum colorings of triangulations, with R. Haas, in preparation.

We examine the structure of color-induced subgraphs of Grünbaum-colored triangulations, including
giving necessary and sufficient conditions on color-induced subgraphs of low-genus triangulations such
that the dual graphs have Hamilton circuits.

[10] Minor-closed classes of signed graphs, with D. C. Slilaty, preprint.
and Topological minor-closed classes of signed graphs, with D. C. Slilaty, in preparation.

We define graphical minor-closed classes of signed graphs and find their forbidden minors. We then
introduce embeddings where the graph signing must be compatible with the surface’s homology, and
investigate topological minor-closed classes of signed graphs and their forbidden minors.

Other Research Projects

Among my many interests are some areas of mathematics best explained by pictures. For example,
convex geometry considers many-dimensional analogues of polygons such as in Figure 3. Knot theory
studies idealized strings that have been knotted and then the ends fused; Figure 4 shows a knot formed
using a particular pattern. The mathematics of paperfolding is concerned with the process indicated in
Figure 5, where executing marked fold lines and angles produces an abstract object.

Figure 3: A four-
dimensional simplex.

Figure 4: A (5,4) torus
knot.
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Figure 5: Folding a crease pattern into a three-
dimensional corner.

Other Research Publications

[11] How to classify regular polytopes, with E. Peters, preprint.

We present a complete and self-contained classification of regular polytopes from the point of view
of convex geometry. This includes some new geometric proofs.

[12] An elementary computation of the Conway polynomial for (m, 3) and (m, 4) torus links, with D.
Rowland, J. Combinatorial Math. and Combinatorial Computing, 96 (February 2016), 159–170.

Using only the skein relation and some combinatorics, we find a closed form for the Conway polyno-
mial of the (m, 3) torus link and a trio of recurrence relations that define the Conway polynomial of
any (m, 4) torus link.

[13] Modelling the folding of paper into three dimensions using affine transformations, with T.C. Hull.
Linear Algebra and its Applications. 348 (2002), 273–282.
and A mathematical model for non-flat origami, with T.C. Hull, in Origami3: Third International

Meeting of Origami, Science, Mathematics and Education, A K Peters, Ltd. (2002), 39–51.

We modelled 3D paperfolding using piecewise isometries and affine transformations of R3 and used
the model to generalize a necessary condition for flat-foldability to 3D foldability. These two papers
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contain the same results but use different proof techniques. The LAA paper is widely cited and still
relevant to physics and engineering researchers.

[14] Classifying frieze patterns without using groups, with T.C. Hull. The College Mathematics Journal,
33(2) March 2002, 93–98.

This paper gives a combinatorial classification of frieze patterns that does not use the group structure
of isometries. (It becomes uninterestingly complicated when applied to wallpaper patterns.)

Algebraic Geometry

As a subfield of mathematics, algebraic geometry is rather broad, and can rely on techniques ranging
from complex analysis to combinatorics. There are many descriptions of algebraic geometry, as well; one is
as the study of geometric objects that can locally be described as zero-sets of polynomials. These objects
are generally referred to as varieties.

My interests within algebraic geometry are algebraic surfaces and toric varieties. An algebraic surface

is a two-complex-dimensional variety (topologists study them as 4-manifolds over the real numbers). A
toric variety is a variety that contains the algebraic torus (C∗)n as a dense subset. This definition gives no
insight as to the really special property of toric varieties: they can be described combinatorially, in terms
of polytopes or sets of polyhedral cones.

A hypersurface is the zero-set defined by a single equation. A 2-dim toric hypersurface S is a nondegen-
erate hypersurface in a three-dimensional toric variety, defined by a Laurent polynomial f =

∑
ci ~xi

~pi . The
~pi correspond to points in R

3; the convex hull of these points is a polytope ∆, called the Newton polytope

associated to f . In particular, because the coefficients of f are not encoded in ∆, each Newton polytope
corresponds to a family {S} of hypersurfaces. Using ∆, we obtain algebraic/geometric information about
the parent variety P∆ and thereby {S} as well.

In my dissertation, I developed a variety of techniques for analyzing elliptic fibrations on K3 2-dim
toric hypersurfaces and used these techniques to compute an invariant (the Picard lattice Pic(S)) for the
generic member of each of the families of K3 2-dim toric hypersurfaces where P∆ is a weighted projective
space (classified by M. Reid). A portion of this work appears in [15].

I have not actively worked in algebraic geometry for more than a decade, but I still follow the literature
and may return to some problems related to my dissertation at a future time.

Algebraic Geometry Publications

[15] Picard lattices of families of K3 surfaces, Communications in Algebra. 30(1), 61–82 (2002).

Part II: Interdisciplinary Work

Mathematics and Dance

In addition to taking dance classes for more than forty years, I have pursued an academic interest
in dance for the last twenty years and used mathematical ideas in my choreography. K. Schaffer and I
gave a lecture/demonstration overviewing connections between mathematics and dance at the 2008 Joint
Mathematics Meetings; this is summarized in [16]. More recently, I have studied R. Laban’s The Language

of Movement ; in it, he invokes polyhedra, linkages, surfaces with boundary, and modular arithmetic. I
have written 20 pages of notes and analysis on this topic that will become at least two papers.

Mathematics and Dance Publications

[16] Dancing Mathematics and the Mathematics of Dance, with K. Schaffer. Math Horizons, February
2011, pp. 16–20. Reprinted in The Best Writing on Mathematics 2012, Ed. Mircea Pitici, Princeton
University Press, pp. 79–92.
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Mathematical Knitting

There is a wealth of mathematical questions one can ask about knitting, with subjects ranging from
analyzing the knitting process itself (two different mathematical models are shown in Figure 6) to studying
different knitting techniques and finding accurate representations of mathematical objects. I am interested
in and have worked with all of these aspects of knitting.

Figure 6: A topological model of knitting (left) and a geometric model of knitting (right).

I co-edited with C. Yackel the booksMaking Mathematics with Needlework (AK Peters, 2007), for which
we wrote an introductory survey of mathematical research on fiber arts, Crafting by Concepts (AK Peters,
2011), and assisted in editing Figuring Fibers (AMS, 2018). We have also written expository articles that
illustrate advanced mathematics in knitting (not listed here).

Mathematical Knitting Research Publications

[17] Every Topological Surface Can Be Knit: A Proof, Journal of Math. and the Arts, June 2009, 67–83.

Using a rubber-sheet topology model of idealized knitting together with the classification of surfaces,
I prove that any topological surface can be knit with a single strand of idealized yarn. I also give
geometric considerations that inform algorithms for producing actual knitted topological surfaces.

[18] Only Two Knit Stitches Can Create a Torus, chapter in Making Mathematics with Needlework.

In this chapter, I classify all possible knit and purl stitches and determine all possible types of knitted
fabric. It turns out that there are exactly two distinct knit stitches that produce conventional knitted
fabric, independent of knitting flat or in the round.

[19] Stop Those Pants!, with C. Yackel, chapter in Making Mathematics with Needlework.

We give (with proof) a knitting construction for surfaces of uniform negative constant curvature, and
focus on the hyperbolic pair of pants.

[20] Generalized Helix Striping, chapter in Crafting by Concepts.

I generalize helix striping from three to n colors and from stripe-heights of one to m, and analyze
this construction from number-theoretic and braid-word perspectives.

[21] Knitting Torus Knots and Links, chapter in Figuring Fibers.

I describe an algorithmic method for preparing circular knitting needles so as to create infinite families
of torus knots and torus links, and determine which torus knots and links can be achieved in this
way.
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Feminist Philosophy of Science

For the past twenty-five years, I have studied various feminist critiques of the scientific enterprise.
The topics addressed by feminist theorists include representation issues, societal influence on the direction
scientific research takes, and how the application of feminist theory can affect scientific knowledge. Within
this landscape, my particular interest is in the feminist philosophy of science, specifically as applied to
the pure physical sciences (mathematics included). I have given four Joint Mathematics Meetings talks in
Philosophy of Mathematics sessions but have not yet revised any of the content for publication.

Feminist Philosophy of Science Publications

[22] Interpretations of Feminist Philosophy of Science by Feminist Physical Scientists, with J. M. Moran,
NWSA Journal, 15 (1) Spring 2003, 20–33.

Our group of graduate-student physical scientists found that most critiques of the biological and social
sciences do not apply to the physical sciences, and believes that feminist critiques of these sciences
must be developed through dialogue between practicing physical scientists and feminist theorists.

[23] Intervening Discourse about Feminist Physical Sciences and Mathematics, preprint.

This is an outgrowth of work started in [22] and will be split into two or three separate papers.
How can we reconcile or possibly mesh feminist theory with our traditional scientific training? This
work explores the ways in which the pure physical sciences may be socially constructed, how the
constitutive values of the pure physical sciences may be seen through the lens of gender, and how the
way in which mathematics is communicated may affect what mathematics is done.

Mathematical Pedagogy

I am very interested in the teaching of mathematics. While working on my own pedagogy and dis-
cussing pedagogy with others, I have gained insights that others have agreed merit dissemination; this
has frequently led to publication. In this section, no item descriptions are included because the titles
are self-explanatory. Items [24], [25], [29], and [32] grew out of classroom experiences and [26] from an
accessible research project. Items [30] and [31] originated in attempts to improve my teaching, and [27]
and [28] came from attempts to answer questions raised in national conference sessions.

Mathematical Pedagogy Publications

[24] Discrete Mathematics with Ducks, textbook, first ed. AK Peters 2012; second ed. CRC Press 2018.

[25] Tablets versus IV—What’s the Dose?, in preparation.

[26] Do the Twist! (on polygon-base boxes), with T. Veenstra, The College Math. J., 47(5) November
2016, 340–345.

[27] Ask Questions to Encourage Questions Asked, PRIMUS 27(2), 2017, 171–178.

[28] To include more students, don’t focus on contests—prepare for mathematics!, February 2004 Math-

ematics Teacher, 97(2), 84–86.

[29] The Devil is in the Culture: Why You Should Read The Number Devil and other Musings on
Mathematical Education and Culture, with A. Howard, Math Horizons November 2002, 16–20 +29.

[30] Active Learning in Abstract Algebra: An Arsenal of Techniques, with L. Burton and M. McDermott,
in Innovations in Teaching Abstract Algebra, MAA Notes 60, MAA, 2002, 3–9.

[31] A Teaching Discussion Group in Your Department—It Can Happen, with D. Shaw and D. Thiessen,
College Teaching 50 (1),Winter 2002, 29–33.

[32] The Cantor Set Contains 1/4? Really?, with M. Green, The College Math. J., 32(1) 2001, 60–61.
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