(There must be more than just these. If you know of any other articles, either academic or non-, please send me references...)

- Adams, Colin; Fleming, Thomas; Koegel, Christopher. Brunnian Clothes on the Runway: Not for the Bashful. American Mathematical Monthly, 111 (November 2004), no. 9, 741--748.
- Ashton, Ted. Fashioning Fine Fractals from Fiber, in
*Crafting by Concepts*, A K Peters (2011), pp. 58--86. (Uses tatting and beading and cross-stitch to create fractals.) - belcastro, s-m; Yackel, Carolyn. About Knitting. Math Horizons, November 2006.
- belcastro, sarah-marie. Every Topological Surface Can Be Knit: A Proof, Journal of Mathematics and the Arts 3(2) June 2009, 67–83.
- belcastro, sarah-marie. Generalized Helix Striping, in
*Crafting by Concepts*, A K Peters (2011), pp. 28--49. (Focuses on knitting stripes.) - belcastro, s-m; Yackel, Carolyn. Introduction (survey of the field), in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 1--10. - belcastro, s-m; Szczepanski, Amy; Yackel, Carolyn. (K)not Cables, Braids, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 118--134. Reprinted in Mitt. Dtsch. Math.-Ver. 16 (2008), no. 1, 26--34, and EMS newsletter, Issue 70, December 2008, pp. 19--25. (Focuses on knitting braid words.) - belcastro, s-m. Only Two Knit Stitches Can Create a Torus, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 53--68. - belcastro, s-m; Yackel, Carolyn. The Seven-Colored Torus: mathematically interesting and nontrivial to construct, in
*Homage to a Pied Puzzler*, ed. by Ed Pegg, Jr., Alan H. Schoen, and Tom Rodgers, A K Peters (2009), pp. 25--32. (Analysis of discretization for creating knitting and crochet patterns.) - belcastro, s-m; Yackel, Carolyn. Stop Those Pants!, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 154--176. (Focuses on knitting a hyperbolic surface.) - Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. Knitting for Fun: A
Recursive Sweater. in
*Fun with Algorithms*, Lecture Notes in Computer Science, Volume 4475, Springer, 2007, 53--65. article (.pdf) - Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. On formal descriptions for knitting recursive patterns. Journal of Mathematics and the Arts, 2(1) March 2008, 9–27.
- Biedl, Therese; Horton, John D.; Lopez-Ortiz, Alejandro. Cross-Stitching Using Little Thread. Proceedings of the 17th Canadian Conference on Computational Geometry (CCCG'05), 199--202.
- Carlson, Christopher; Paley, Nina; Gray, Theodore. Algorithmic Quilting, in
*Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture*, ed. K. Delp, C. S. Kaplan, D. McKenna and R. Sarhangi, 231--238. - Cochrane, Paul. Knitting Maths. Mathematics Teaching September 1988, pp. 26--28.
- Conway, J. H. Mrs. Perkins's quilt. Proc. Cambridge Philos. Soc. 60 (1964) 363--368. (This doesn't have even a reference to quilting, but the quilting application of the mathematics is obvious to crafters.)
- Curtis, S.A. An Application of Functional Programming: Quilting. in
*Trends in Functional Programming*, edited by Stephen Gilmore, Vol. 2, Intellect, 2000. - Curtis, S.A. Marble Mingling. Journal of Functional Programming, 16 (2006), issue 2, 129--136. (This has a passing mention of a quilting problem.)
- DeTemple, Duane. Reflection Borders for Patchwork Quilts. Mathematics Teacher, February 1986, 138–143.
- Fisher, Gwen. The Quaternions Quilts. FOCUS 25 (2005), no. 1, 4--5.
- Fisher, Gwen. Quilt Designs Using Non-Edge-to-Edge Tilings by Squares,
in
*Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings 2003*, ed. R. Sarhangi and C. Sequin, 265--272. - Fisher, Gwen; Mellor, Blake. Using tiling theory to generate angle weaves with beads. Journal of Mathematics and the Arts, Volume 6, Issue 4 (2012), 141--158.
- Funahashi, Tatsushi; Yamada, Masashi; Seki, Hirohisa; Itoh, Hidenori. A technique for representing cloth shapes and generating 3-dimensional knitting shapes. Forma 14 (1999), no. 3, 239--248.
- Goldstine, Susan; Baker, Ellie. Building a better bracelet: wallpaper patterns in bead crochet. Journal of Mathematics and the Arts, Volume 6, Issue 1 (2012), 5--17.
- Goldstine, Susan. Fortunatus's Purse, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 104--117. (Focuses on sewing and topology.) - Goldstine, Susan. Perfectly Simple, in
*Crafting by Concepts*, A K Peters (2011), pp. 140--148. (Focuses on crocheting square dissections.) - Goldstine, Susan. A Recursion in Knitting, in
*Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture*, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi, 395--398. - Gould, Frank; Gould, S. Louise. Exploring the Projective Plane via Variations on the Faceted Octahedron. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 507--508
- Grishanov, S.A.; Cassidy, T; Spencer, D.J. A model of the loop formation process on knitting machines using finite automata theory. Applied Mathematical Modelling 21(7) July 1997, 455–465.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part I: An Introduction to Topological Methods. Textile Research Journal 79 (2009), no. 8, 702--713.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures. Textile Research Journal 79 (2009), no. 9, 822--36.
- Grishanov, S.A.; Meshkov, V.R.; Vassiliev, V.A. Recognizing textile structures by finite type invariants. J. Knot Theory Ramifications 18 (2011) no. 2, 209--35.
- Grishanov, S.A.; Vassiliev, V.A. Invariants of Links in 3-Manifolds and Splitting Problem of Textile Structures. J. Knot Theory Ramifications 20 (2011), 345--370.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. Kauffman-type polynomial invariants of doubly-periodic structures. J. Knot Theory Ramifications Vol. 16, No. 6 (2007) 779--788.
- Grishanov, S.;Tausif, M; Russell, S.J. Characterisation of fibre entanglement in nonwoven fabrics based on knot theory. Composites Science and Technology 72 (2012) 1331--1337.
- Grünbaum, Branko. Periodic Ornamentation of the Fabric Plane:
Lessons from Peruvian Fabrics. In
*Symmetry Comes of Age: The Role of Pattern in Culture*, pp. 18--64. University of Washington Press, 2004. - Harris, Mary. Mathematics and Fabrics. Mathematics Teaching 120 (1987), 43--45.
- Henderson, David W.; Taimina, Daina. Crocheting the hyperbolic plane. Math. Intelligencer 23 (2001), no. 2, 17--28. article (.pdf)
- Herrmann, Diane. Diaper Patterns in Needlepoint, in
*Crafting by Concepts*, A K Peters (2011), pp. 87--109. - Holden, Joshua. The Graph Theory of Blackwork Embroidery, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 135--153. - Holden, Joshua; Holden, Lana. Hyperbolic Tilings with Truly Hyperbolic Crochet Motifs. Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 405--408.
- Holden, Joshua; Holden, Lana. Modeling Braids, Cables, and Weaves with Stranded Cellular Automata, in
*Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture*, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi, 127--134. - Holden, Lana. Picking Up Stitches and Diophantine Equations, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 29--39. (Focuses on knitting in different directions.) - Igarashi, Yuki; Igarashi, Takeo; Suzuki, Hiromasa. Knitting a 3D Model. Computer Graphics Forum (Proceedings of Pacific Graphics 2008), 27(7), Oct. 2008, 1737–1743.
- Irvine, Veronika. Broadening the Palette for Bobbin Lace: A Combinatorial Approach. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 191--198.
- Irvine, Veronika; Ruskey, Frank. Developing a mathematical model for bobbin lace. Journal of Mathematics and the Arts, Volume 8, Issue 3--4 (2014), 95--110.
- Irving, Claire. Making the Real Projective Plane. Math. Gazette November 2005, 417--423. (This focuses on knitted models.)
- Isaksen, Daniel; Petrofsky, Al. Mobius knitting, in
*Bridges: Mathematical Connections in Art, Music, and Science, Conference Proceedings 1999*, ed. R. Sarhangi, 1999, 67--76. article - Kaldor, Jonathan M.; James, Doug L.; Marschner, Steve. Simulating knitted cloth at the yarn level. International Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH 2008 papers, Article No. 65. ACM Press, 2008. two versions of the paper.
- Liebscher, U., and Weber, M., Topological Studies of Textiles I. Fundamentals. Textiltechnik 30(1), 58--61 (1980).
- Liebscher, U., and Weber, M., Topological Studies of Textiles II. Applications and Examples. Textiltechnik 30(1), 30(3) 176--178 (1980).
- Mabbs, Louise. Fabric Sculpture—Jacobs Ladder. In
*Bridges London: Conference Proceedings 2006*, pp. 561–568. Tarquin Publications, 2006. - Mallos, James. Triangle-Strip Knitting. Hyperseeing: Proceedings of ISAMA 2010, Summer 2010, 111–116.
- McCann, James; Albaugh, Lea; Narayanan, Vidya; Grow, April; Matusik, Wojciech; Mankoff, Jennifer; Hodgins, Jessica. A compiler for 3D machine knitting. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2016 Volume 35 Issue 4, July 2016, Article No. 49. (project page)
- Morton, H.R.; Grishanov, S. Doubly periodic textile patterns. J. Knot Theory Ramifications 18 (2009), 1597--1622.
- Osinga, Hinke M.; Krauskopf, Bernd. Crocheting the Lorenz manifold. The Mathematical Intelligencer 26 (2004), no. 4, 25--37. article
- Osinga, Hinke M.; Krauskopf, Bernd. Visualizing curvature on the Lorenz manifold. Journal of Mathematics and the Arts 1(2): 113-123, 2007. article
- Peters, Emily. A Knitted Cross-Cap, in
*Crafting by Concepts*, A K Peters (2011), pp. 50--57. - Pickett, Barbara Setsu. Sashiko: the Stitched Geometry of Rural Japan, in
*Bridges London: Conference Proceedings 2006*pp. 211–214. Tarquin Publications, 2006. - Reid, Miles. The Knitting of Surfaces. Eureka - The Journal of the Archimedeans 34 (1971), pp21-26.
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 1. 2-Manifold 2, Autumn 1982, 9--14.
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 2: the Boy's Surface. 2-Manifold, (the next issue), 10--21.
- Ross, Joan. How to Make a Mobius Hat by Crocheting. Mathematics Teacher 78, (1985) 268--269.
- Seaton, Katherine. Sphericons and D-forms: a crocheted connection to appear in Journal of Mathematics and the Arts.
- Shepherd, Mary D.; with belcastro, sarah-marie and Yackel, Carolyn. Group Actions in Cross-Stitch, in
*Crafting by Concepts*, A K Peters (2011), pp. 110--139. - Shepherd, Mary D. Groups, Symmetry and Other Explorations with Cross Stitch. Electronic Proceedings of the Missouri MAA, 2007 Meeting. article (.doc)
- Shepherd, Mary D. Symmetry Patterns in Cross Stitch, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 69--89. - Swanson, Irena. Quilting Semiregular Tessellations, in
*Crafting by Concepts*, A K Peters (2011), pp. 186--232. - Szczepanski, Amy. Knit Knit Revolution, in
*Crafting by Concepts*, A K Peters (2011), pp. 1--27. - Szczepanski, Amy. Quilted Möbius Band, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 11--28. - Trustrum, G. B. Mrs Perkins's quilt. Proc. Cambridge Philos. Soc. 61 1965 7--11. (This doesn't have even a reference to quilting, but the quilting application of the mathematics is obvious to crafters.)
- Vandermonde, Alexandre-The'ophile. Remarques sur les Probl`emes de Situation. Histoire de l' Acade'mie des Sciences (Paris) (1771), 566--574. (Mainly about knight's tours on chessboards, he does describe paths through space for rows of stockinette.)
- Wildstrom, D. Jacob. The Sierpinski Variations, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 40--52. (Focuses on cellular automata in crochet.) - Wildstrom, D. Jacob. Structural Qualities and Serial Construction of Tournament Braids. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 463--466. (The mathematics was motivated by constructing braids in crochet.)
- Williams, Mary C.; Sharp, John. A Collaborative Parabolic Quilt, in
*Bridges: Mathematical Connections in Art, Music, and Science, Conference Proceedings 2002*, ed. R. Sarhangi, 143--149. - Williams, Mary C. Quilts Inspired by Mathematics, in
*Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings 2003*, ed. R. Sarhangi and C. Sequin, 393--399. - Yackel, C. A. Embroidering Polyhedra on Temari Balls. In
*Math+Art=X Boulder, CO Conference Proceedings 2005*, pp. 183–187. - Yackel, C. A. Marking a Physical Sphere with a Projected Platonic Solid. In
*Bridges Banff: Proceedings 2009*, pp. 123–130. Tarquin Publications, 2009. - Yackel, Carolyn. Socks with Algebraic Structure, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 90--103. (Focuses on knitting and group theory.) - Yackel, Carolyn; with belcastro, sarah-marie. Spherical Symmetries of Temari, in
*Crafting by Concepts*, A K Peters (2011), pp. 149--185. - Yuksel, Cem; Kaldor, Jonathan; James, Doug L.; Marschner, Steve. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Transactions on Graphics (Proc. of SIGGRAPH 2012), 31, 3, 37. project page

- Vandermonde, Alexandre-The'ophile. Remarques sur les Probl`emes de Situation. Histoire de l' Acade'mie des Sciences (Paris) (1771), 566--574. (Mainly about knight's tours on chessboards, he does describe paths through space for rows of stockinette.)
- Conway, J. H. Mrs. Perkins's quilt. Proc. Cambridge Philos. Soc. 60 (1964) 363--368. (This doesn't have even a reference to quilting, but the quilting application of the mathematics is obvious to crafters.)
- Trustrum, G. B. Mrs Perkins's quilt. Proc. Cambridge Philos. Soc. 61 1965 7--11. (This doesn't have even a reference to quilting, but the quilting application of the mathematics is obvious to crafters.)
- Reid, Miles. The Knitting of Surfaces. Eureka - The Journal of the Archimedeans 34 (1971), pp21-26.
- Liebscher, U., and Weber, M., Topological Studies of Textiles I. Fundamentals. Textiltechnik 30(1), 58--61 (1980).
- Liebscher, U., and Weber, M., Topological Studies of Textiles II. Applications and Examples. Textiltechnik 30(1), 30(3) 176--178 (1980).
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 1. 2-Manifold 2, Autumn 1982, 9--14.
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 2: the Boy's Surface. 2-Manifold, (the next issue), 10--21.
- Ross, Joan. How to Make a Mobius Hat by Crocheting. Mathematics Teacher 78, (1985) 268--269.
- DeTemple, Duane. Reflection Borders for Patchwork Quilts. Mathematics Teacher, February 1986, 138–143.
- Harris, Mary. Mathematics and Fabrics. Mathematics Teaching 120 (1987), 43--45.
- Cochrane, Paul. Knitting Maths. Mathematics Teaching September 1988, pp. 26--28.

- Isaksen, Daniel; Petrofsky, Al. Mobius knitting, in
*Bridges: Mathematical Connections in Art, Music, and Science, Conference Proceedings 1999*, ed. R. Sarhangi, 1999, 67--76. article - Grishanov, S.A.; Cassidy, T; Spencer, D.J. A model of the loop formation process on knitting machines using finite automata theory. Applied Mathematical Modelling 21(7) July 1997, 455–465.
- Funahashi, Tatsushi; Yamada, Masashi; Seki, Hirohisa; Itoh, Hidenori. A technique for representing cloth shapes and generating 3-dimensional knitting shapes. Forma 14 (1999), no. 3, 239--248.
- Curtis, S.A. An Application of Functional Programming: Quilting. in
*Trends in Functional Programming*, edited by Stephen Gilmore, Vol. 2, Intellect, 2000.

- Henderson, David W.; Taimina, Daina. Crocheting the hyperbolic plane. Math. Intelligencer 23 (2001), no. 2, 17--28. article (.pdf)
- Williams, Mary C.; Sharp, John. A Collaborative Parabolic Quilt, in
*Bridges: Mathematical Connections in Art, Music, and Science, Conference Proceedings 2002*, ed. R. Sarhangi, 143--149. - Fisher, Gwen. Quilt Designs Using Non-Edge-to-Edge Tilings by Squares,
in
*Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings 2003*, ed. R. Sarhangi and C. Sequin, 265--272. - Williams, Mary C. Quilts Inspired by Mathematics, in
*Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings 2003*, ed. R. Sarhangi and C. Sequin, 393--399. - Osinga, Hinke M.; Krauskopf, Bernd. Crocheting the Lorenz manifold. The Mathematical Intelligencer 26 (2004), no. 4, 25--37. article
- Grünbaum, Branko. Periodic Ornamentation of the Fabric Plane:
Lessons from Peruvian Fabrics. In
*Symmetry Comes of Age: The Role of Pattern in Culture*, pp. 18–64. University of Washington Press, 2004. - Adams, Colin; Fleming, Thomas; Koegel, Christopher. Brunnian Clothes on the Runway: Not for the Bashful. American Mathematical Monthly, 111 (November 2004), no. 9, 741--748.
- Biedl, Therese; Horton, John D.; Lopez-Ortiz, Alejandro. Cross-Stitching Using Little Thread. Proceedings of the 17th Canadian Conference on Computational Geometry (CCCG'05), 199--202.
- Fisher, Gwen. The Quaternions Quilts. FOCUS 25 (2005), no. 1, 4--5.
- Yackel, C. A. Embroidering Polyhedra on Temari Balls. In
*Math+Art=X Boulder, CO Conference Proceedings 2005*, pp. 183–187. - Irving, Claire. Making the Real Projective Plane. Math. Gazette November 2005, 417--423. (This focuses on knitted models.)

- Mabbs, Louise. Fabric Sculpture—Jacobs Ladder. In
*Bridges London: Conference Proceedings 2006*, pp. 561–568. Tarquin Publications, 2006. - Curtis, S.A. Marble Mingling. Journal of Functional Programming, 16 (2006), issue 2, 129--136. (This has a passing mention of a quilting problem.)
- Pickett, Barbara Setsu. Sashiko: the Stitched Geometry of Rural Japan, in
*Bridges London: Conference Proceedings 2006*pp. 211–214. Tarquin Publications, 2006. - belcastro, s-m; Yackel, Carolyn. About Knitting. Math Horizons, November 2006.
- belcastro, s-m; Yackel, Carolyn. Introduction (survey of the field), in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 1--10. - belcastro, s-m; Szczepanski, Amy; Yackel, Carolyn. (K)not Cables, Braids, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 118--134. Reprinted in Mitt. Dtsch. Math.-Ver. 16 (2008), no. 1, 26--34, and EMS newsletter, Issue 70, December 2008, pp. 19--25. (Focuses on knitting braid words.) - belcastro, s-m. Only Two Knit Stitches Can Create a Torus, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 53--68. - belcastro, s-m; Yackel, Carolyn. Stop Those Pants!, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 154--176. (Focuses on knitting a hyperbolic surface.) - Goldstine, Susan. Fortunatus's Purse, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 104--117. (Focuses on sewing and topology.) - Holden, Joshua. The Graph Theory of Blackwork Embroidery, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 135--153. - Holden, Lana. Picking Up Stitches and Diophantine Equations, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 29--39. (Focuses on knitting in different directions.) - Shepherd, Mary D. Symmetry Patterns in Cross Stitch, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 69--89. - Szczepanski, Amy. Quilted Möbius Band, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 11--28. - Wildstrom, D. Jacob. The Sierpinski Variations, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 40--52. (Focuses on cellular automata in crochet.) - Yackel, Carolyn. Socks with Algebraic Structure, in
*Making Mathematics with Needlework*, A K Peters (2007), pp. 90--103. (Focuses on knitting and group theory.) - Shepherd, Mary D. Groups, Symmetry and Other Explorations with Cross Stitch. Electronic Proceedings of the Missouri MAA, 2007 Meeting. article (.doc)
- Osinga, Hinke M.; Krauskopf, Bernd. Visualizing curvature on the Lorenz manifold. Journal of Mathematics and the Arts 1(2): 113-123, 2007. article
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. Kauffman-type polynomial invariants of doubly-periodic structures. J. Knot Theory Ramifications Vol. 16, No. 6 (2007) 779--788.
- Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. Knitting for Fun: A
Recursive Sweater. in
*Fun with Algorithms*, Lecture Notes in Computer Science, Volume 4475, Springer, 2007, 53--65. article (.pdf) - Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. On formal descriptions for knitting recursive patterns. Journal of Mathematics and the Arts, 2(1) March 2008, 9–27.
- Igarashi, Yuki; Igarashi, Takeo; Suzuki, Hiromasa. Knitting a 3D Model. Computer Graphics Forum (Proceedings of Pacific Graphics 2008), 27(7), Oct. 2008, 1737–1743.
- Kaldor, Jonathan M.; James, Doug L.; Marschner, Steve. Simulating knitted cloth at the yarn level. International Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH 2008 papers, Article No. 65. ACM Press, 2008. two versions of the paper.
- belcastro, sarah-marie. Every Topological Surface Can Be Knit: A Proof, Journal of Mathematics and the Arts 3(2) June 2009, 67–83.
- belcastro, s-m; Yackel, Carolyn. The Seven-Colored Torus: mathematically interesting and nontrivial to construct, in
*Homage to a Pied Puzzler*, ed. by Ed Pegg, Jr., Alan H. Schoen, and Tom Rodgers, A K Peters (2009), pp. 25--32. (Analysis of discretization for creating knitting and crochet patterns.) - Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part I: An Introduction to Topological Methods. Textile Research Journal 79 (2009), no. 8, 702--713.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures. Textile Research Journal 79 (2009), no. 9, 822--36.
- Morton, H.R.; Grishanov, S. Doubly periodic textile patterns. J. Knot Theory Ramifications 18 (2009), 1597--1622.
- Yackel, C. A. Marking a Physical Sphere with a Projected Platonic Solid. In
*Bridges Banff: Proceedings 2009*, pp. 123–130. Tarquin Publications, 2009.

- Mallos, James. Triangle-Strip Knitting. Hyperseeing: Proceedings of ISAMA 2010, Summer 2010, 111–116.
- Grishanov, S.A.; Meshkov, V.R.; Vassiliev, V.A. Recognizing textile structures by finite type invariants. J. Knot Theory Ramifications 18 (2011) no. 2, 209--35.
- Grishanov, S.A.; Vassiliev, V.A. Invariants of Links in 3-Manifolds and Splitting Problem of Textile Structures. J. Knot Theory Ramifications 20 (2011), 345--370.
- Ashton, Ted. Fashioning Fine Fractals from Fiber, in
*Crafting by Concepts*, A K Peters (2011), pp. 58--86. (Uses tatting and beading and cross-stitch to create fractals.) - belcastro, sarah-marie. Generalized Helix Striping, in
*Crafting by Concepts*, A K Peters (2011), pp. 28--49. (Focuses on knitting stripes.) - Goldstine, Susan. Perfectly Simple, in
*Crafting by Concepts*, A K Peters (2011), pp. 140--148. (Focuses on crocheting square dissections.) - Herrmann, Diane. Diaper Patterns in Needlepoint, in
*Crafting by Concepts*, A K Peters (2011), pp. 87--109. - Peters, Emily. A Knitted Cross-Cap, in
*Crafting by Concepts*, A K Peters (2011), pp. 50--57. - Shepherd, Mary D.; with belcastro, sarah-marie and Yackel, Carolyn. Group Actions in Cross-Stitch, in
*Crafting by Concepts*, A K Peters (2011), pp. 110--139. - Swanson, Irena. Quilting Semiregular Tessellations, in
*Crafting by Concepts*, A K Peters (2011), pp. 186--232. - Szczepanski, Amy. Knit Knit Revolution, in
*Crafting by Concepts*, A K Peters (2011), pp. 1--27. - Yackel, Carolyn; with belcastro, sarah-marie. Spherical Symmetries of Temari, in
*Crafting by Concepts*, A K Peters (2011), pp. 149--185. - Goldstine, Susan; Baker, Ellie. Building a better bracelet: wallpaper patterns in bead crochet. Journal of Mathematics and the Arts, Volume 6, Issue 1 (2012), 5--17.
- Yuksel, Cem; Kaldor, Jonathan; James, Doug L.; Marschner, Steve. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Transactions on Graphics (Proc. of SIGGRAPH 2012), 31, 3, 37. project page
- Wildstrom, D. Jacob. Structural Qualities and Serial Construction of Tournament Braids. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 463--466. (The mathematics was motivated by constructing braids in crochet.)
- Gould, Frank; Gould, S. Louise. Exploring the Projective Plane via Variations on the Faceted Octahedron. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 507--508
- Irvine, Veronika. Broadening the Palette for Bobbin Lace: A Combinatorial Approach. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 191--198.
- Fisher, Gwen; Mellor, Blake. Using tiling theory to generate angle weaves with beads. Journal of Mathematics and the Arts, Volume 6, Issue 4 (2012), 141--158.
- Grishanov, S.;Tausif, M; Russell, S.J. Characterisation of fibre entanglement in nonwoven fabrics based on knot theory. Composites Science and Technology 72 (2012) 1331--1337.
- Holden, Joshua; Holden, Lana. Hyperbolic Tilings with Truly Hyperbolic Crochet Motifs. Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 405--408.
- Irvine, Veronika; Ruskey, Frank. Developing a mathematical model for bobbin lace. Journal of Mathematics and the Arts, Volume 8, Issue 3--4 (2014), 95--110.
- Carlson, Christopher; Paley, Nina; Gray, Theodore. Algorithmic Quilting, in
*Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture*, ed. K. Delp, C. S. Kaplan, D. McKenna and R. Sarhangi, 231--238. - Goldstine, Susan. A Recursion in Knitting, in
*Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture*, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi, 395--398. - Holden, Joshua; Holden, Lana. Modeling Braids, Cables, and Weaves with Stranded Cellular Automata, in
*Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture*, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi, 127--134. - McCann, James; Albaugh, Lea; Narayanan, Vidya; Grow, April; Matusik, Wojciech; Mankoff, Jennifer; Hodgins, Jessica. A compiler for 3D machine knitting. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2016 Volume 35 Issue 4, July 2016, Article No. 49. (project page)
- Seaton, Katherine. Sphericons and D-forms: a crocheted connection to appear in Journal of Mathematics and the Arts.

- Ahmed, Abdalla G. M. AA Weaving. Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture (2013), pp. 263--270.
- Ahmed, Abdalla G. M. Modular Duotone Weaving Design. Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 27--34.
- Ahmed, Abdalla G. M.; Deussen, Oliver. Tuti Weaving, in
*Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture*, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi, 49--56. - Akleman, Ergun; Chen, Jianer; Xing, Qing; Gross, Jonathan L. Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems. ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH 2009 28(3) August 2009, Article No. 78.
- Burkholder, Douglas G. Brunnian Weavings. Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture (2010), pp. 263--270.
- Chen, Yen-Lin; Akleman, Ergun; Chen, Jianer; Xing, Qing. Designing Biaxial Textile Weaving Patterns. Hyperseeing: Proceedings of ISAMA 2010, Summer 2010, 53–62.
- Clapham, C. R. J. The strength of a fabric. Bull. London Math. Soc. 26 (1994), no. 2, 127--131.
- Clapham, C. R. J. The bipartite tournament associated with a fabric. Discrete Math. 57 (1985), no. 1-2, 195--197.
- Clapham, C. R. J. When a three-way fabric hangs together. J. Combin. Theory Ser. B 38 (1985), no. 2, 190.
- Clapham, C. R. J. When a fabric hangs together. Bull. London Math. Soc. 12 (1980), no. 3, 161--164.
- Delaney, Cathy. When a Fabric Hangs Together. Ars Combinatoria 21-A (1986), 71--79.
- Enns, T. C. An efficient algorithm determining when a fabric hangs together. Geometriae Dedicata, 15 (1984), 259–260.
- Grünbaum, B.; Shephard, G. C. Satins and Twills: Introduction to the Geometry of Fabrics. Mathematics Magazine, vol. 53, no. 3, May 1980, p. 139--161.
- Grünbaum, B.; Shephard, G. C. A catalogue of isonemal fabrics. Discrete Geometry and Convexity, Annals of the New York Academy of Sciences 440 (1985), 279–298.
- Grünbaum, B.; Shephard, G. C. An extension to the catalogue of isonemal fabrics. Discrete Math. 60 (1986), 155–192.
- Grünbaum, B.; Shephard, G. C. Isonemal fabrics. Amer. Math. Monthly 95 (1988), 5–30.
- Hoskins, J. A.; Thomas, R. S. D. The patterns of the isonemal two-colour two-way two-fold fabrics. Bull. Austral. Math. Soc. 44 (1991), no. 1, 33--43.
- Hoskins, J. A.; Hoskins, W. D. An algorithm for color factoring a matrix. Current trends in matrix theory (Auburn, Ala., 1986), 147--154, North-Holland, New York, 1987.
- Hoskins, J. A.; Stanton, R. G.; Street, A. P. The compound twillins: reflection at an element. Ars Combin. 17 (1984), 177--190.
- Hoskins, Janet A.; Street, Anne Penfold; Stanton, R. G. Binary interlacement arrays, and how to find them. Proceedings of the thirteenth Manitoba conference on numerical mathematics and computing (Winnipeg, Man., 1983). Congr. Numer. 42 (1984), 321--376.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Balanced twills with bounded float length. Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983). Congr. Numer. 40 (1983), 77--89.
- Hoskins, J. A. Binary interlacement arrays and structural cross-sections. Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983). Congr. Numer. 40 (1983), 63--76.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Twills with bounded float length. Bull. Austral. Math. Soc. 28 (1983), no. 2, 255--281.
- Hoskins, J. A.; Stanton, R. G.; Street, Anne Penfold. Enumerating the compound twillins. Congr. Numer. 38 (1983), 3--22.
- Hoskins, J. A.; Hoskins, W. D.; Street, Anne Penfold; Stanton, R. G. Some elementary isonemal binary matrices. Ars Combin. 13 (1982), 3--38.
- Hoskins, J. A. Factoring binary matrices: a weaver's approach.
in
*Combinatorial mathematics, IX (Brisbane, 1981)*, pp. 300--326, Lecture Notes in Math., 952, Springer, Berlin-New York, 1982. - Hoskins, Janet A.; Hoskins, W. D. The solution of certain matrix equations arising from the structural analysis of woven fabrics. Ars Combin. 11 (1981), 51--59.
- Lucas, E. Application de l'Arithmétique à la Construction de l'Armure des Satins Réguliers, Paris, 1867.
- Lucas, E. Principii fondamentali della geometria dei tessute, L'Ingegneria Civile e le Arti Industriali, 6 (1880) 104--111, 113--115.
- Lucas, E. Les principes fondamentaux de la géometrie des tissus, Compte Rendu de L'Association Française fpour l'Avancement des Sciences, 40 (1911) 72--88.
- Oates-Williams, Sheila; Street, Anne Penfold. Universal fabrics. in
*Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference on Combinatorial Mathematics Held at Deakin University, Geelong, Australia, August 2529, 1980*, Lecture Notes in Mathematics 884, pp. 355–359. Springer, 1981. - Pedersen, Jean J. Some isonemal fabrics on polyhedral surfaces. In
*The Geometric Vein: The Coxeter Festschrift*, ed. by Chandler Davis, Branko Grünbaum, and F. A. Sherk, pp. 99–122, Springer-Verlag, 1981. - Pedersen, Jean. Geometry: the unity of theory and practice. Math. Intelligencer 5 (1983), no. 4, 37--49.
- Philips, Tony. Inside-out Frieze Symmetries in Ancient Peruvian Weavings. AMS Feature Column October 2008.
- Roth, Richard L. The symmetry groups of periodic isonemal fabrics. Geom. Dedicata 48 (1993), 191–210.
- Roth, Richard L. Perfect colorings of isonemal fabrics using two colors. Geom. Dedicata 56 (1995), 307–326.
- Shorter, S.A. The Mathematical Theory of the Sateen Arrangement. The Mathematical Gazette. 10 (1920), p.92--97.
- Thomas, R.S.D. Isonemal prefabrics with only parallel axes of symmetry. Discrete Mathematics 309 (9), 6 May 2009, 2696--2711. arXiv version
- Thomas, R.S.D. Isonemal Prefabrics with Perpendicular Axes of Symmetry. Utilitas Mathematica, 82 (2010), 33--70. arXiv version.
- Thomas, R.S.D. Isonemal Prefabrics with No Axes of Symmetry. Discrete Mathematics 310 (2010), 1307--1324. arXiv version.
- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thin striping. Bulletin of the Australian Mathematical Society, 83, No. 1, 63-86 (2011).
- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thick striping. Bulletin of the Australian Mathematical Society,Volume 85, Issue 02 (April 2012), pp 325--349.
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thick Striping. Contributions to Discrete Mathematics. Vol 8, No 1 (2013).
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thin Striping. Contributions to Discrete Mathematics. Vol 9, No 2 (2014).
- Woods, H. J. The geometrical basis of pattern design. Part II—Nets and Sateens. Textile Institute of Manchester Journal, 26 (1935), T293–T308.
- Zelinka, Bohdan. Isonemality and mononemality of woven fabrics. Applications of Mathematics, 28(3) 1983, 194–198.
- Zelinka, Bohdan. Symmetries of woven fabrics. Applications of Mathematics, 29(1) 1984, 14–22.

- Lucas, E. Application de l'Arithmétique à la Construction de l'Armure des Satins Réguliers, Paris, 1867.
- Lucas, E. Principii fondamentali della geometria dei tessute, L'Ingegneria Civile e le Arti Industriali, 6 (1880) 104--111, 113--115.
- Lucas, E. Les principes fondamentaux de la géometrie des tissus, Compte Rendu de L'Association Française fpour l'Avancement des Sciences, 40 (1911) 72--88.
- Shorter, S.A. The Mathematical Theory of the Sateen Arrangement. The Mathematical Gazette. 10 (1920), p.92--97.
- Woods, H. J. The geometrical basis of pattern design. Part II—Nets and Sateens. Textile Institute of Manchester Journal, 26 (1935), T293–T308.

- Clapham, C. R. J. When a fabric hangs together. Bull. London Math. Soc. 12 (1980), no. 3, 161--164.
- Grünbaum, B.; Shephard, G. C. Satins and Twills: Introduction to the Geometry of Fabrics. Mathematics Magazine, vol. 53, no. 3, May 1980, p. 139--161.
- Oates-Williams, Sheila; Street, Anne Penfold. Universal fabrics. in
*Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference on Combinatorial Mathematics Held at Deakin University, Geelong, Australia, August 2529, 1980*, Lecture Notes in Mathematics 884, pp. 355–359. Springer, 1981. - Pedersen, Jean J. Some isonemal fabrics on polyhedral surfaces. In
*The Geometric Vein: The Coxeter Festschrift*, ed. by Chandler Davis, Branko Grünbaum, and F. A. Sherk, pp. 99–122, Springer-Verlag, 1981. - Hoskins, Janet A.; Hoskins, W. D. The solution of certain matrix equations arising from the structural analysis of woven fabrics. Ars Combin. 11 (1981), 51--59.
- Hoskins, J. A. Factoring binary matrices: a weaver's approach.
in
*Combinatorial mathematics, IX (Brisbane, 1981)*, pp. 300--326, Lecture Notes in Math., 952, Springer, Berlin-New York, 1982. - Hoskins, J. A.; Hoskins, W. D.; Street, Anne Penfold; Stanton, R. G. Some elementary isonemal binary matrices. Ars Combin. 13 (1982), 3--38.
- Hoskins, J. A.; Stanton, R. G.; Street, Anne Penfold. Enumerating the compound twillins. Congr. Numer. 38 (1983), 3--22.
- Hoskins, J. A. Binary interlacement arrays and structural cross-sections. Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983). Congr. Numer. 40 (1983), 63--76.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Twills with bounded float length. Bull. Austral. Math. Soc. 28 (1983), no. 2, 255--281.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Balanced twills with bounded float length. Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983). Congr. Numer. 40 (1983), 77--89.
- Pedersen, Jean. Geometry: the unity of theory and practice. Math. Intelligencer 5 (1983), no. 4, 37--49.
- Zelinka, Bohdan. Isonemality and mononemality of woven fabrics. Applications of Mathematics, 28(3) 1983, 194–198.
- Zelinka, Bohdan. Symmetries of woven fabrics. Applications of Mathematics, 29(1) 1984, 14–22.
- Enns, T. C. An efficient algorithm determining when a fabric hangs together. Geometriae Dedicata, 15 (1984), 259–260.
- Hoskins, J. A.; Stanton, R. G.; Street, A. P. The compound twillins: reflection at an element. Ars Combin. 17 (1984), 177--190.
- Hoskins, Janet A.; Street, Anne Penfold; Stanton, R. G. Binary interlacement arrays, and how to find them. Proceedings of the thirteenth Manitoba conference on numerical mathematics and computing (Winnipeg, Man., 1983). Congr. Numer. 42 (1984), 321--376.

- Clapham, C. R. J. The bipartite tournament associated with a fabric. Discrete Math. 57 (1985), no. 1-2, 195--197.
- Clapham, C. R. J. When a three-way fabric hangs together. J. Combin. Theory Ser. B 38 (1985), no. 2, 190.
- Grünbaum, B.; Shephard, G. C. A catalogue of isonemal fabrics. Discrete Geometry and Convexity, Annals of the New York Academy of Sciences 440 (1985), 279–298.
- Grünbaum, B.; Shephard, G. C. An extension to the catalogue of isonemal fabrics. Discrete Math. 60 (1986), 155–192.
- Delaney, Cathy. When a Fabric Hangs Together. Ars Combinatoria 21-A (1986), 71--79.
- Hoskins, J. A.; Hoskins, W. D. An algorithm for color factoring a matrix. Current trends in matrix theory (Auburn, Ala., 1986), 147--154, North-Holland, New York, 1987.
- Grünbaum, B.; Shephard, G. C. Isonemal fabrics. Amer. Math. Monthly 95 (1988), 5–30.

- Hoskins, J. A.; Thomas, R. S. D. The patterns of the isonemal two-colour two-way two-fold fabrics. Bull. Austral. Math. Soc. 44 (1991), no. 1, 33--43.
- Roth, Richard L. The symmetry groups of periodic isonemal fabrics. Geom. Dedicata 48 (1993), 191–210.
- Clapham, C. R. J. The strength of a fabric. Bull. London Math. Soc. 26 (1994), no. 2, 127--131.
- Roth, Richard L. Perfect colorings of isonemal fabrics using two colors. Geom. Dedicata 56 (1995), 307–326.

- Philips, Tony. Inside-out Frieze Symmetries in Ancient Peruvian Weavings. AMS Feature Column October 2008.
- Thomas, R.S.D. Isonemal prefabrics with only parallel axes of symmetry. Discrete Mathematics 309 (9), 6 May 2009, 2696--2711. arXiv version
- Akleman, Ergun; Chen, Jianer; Xing, Qing; Gross, Jonathan L. Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems. ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH 2009 28(3) August 2009, Article No. 78.
- Thomas, R.S.D. Isonemal Prefabrics with Perpendicular Axes of Symmetry. Utilitas Mathematica, 82 (2010), 33--70. arXiv version.
- Thomas, R.S.D. Isonemal Prefabrics with No Axes of Symmetry. Discrete Mathematics 310 (2010), 1307--1324. arXiv version.
- Burkholder, Douglas G. Brunnian Weavings. Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture (2010), pp. 263--270.
- Chen, Yen-Lin; Akleman, Ergun; Chen, Jianer; Xing, Qing. Designing Biaxial Textile Weaving Patterns. Hyperseeing: Proceedings of ISAMA 2010, Summer 2010, 53–62.

- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thin striping. Bulletin of the Australian Mathematical Society, 83, No. 1, 63-86 (2011).
- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thick striping. Bulletin of the Australian Mathematical Society,Volume 85, Issue 02 (April 2012), pp 325--349.
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thick Striping. Contributions to Discrete Mathematics. Vol 8, No 1 (2013).
- Ahmed, Abdalla G. M. AA Weaving. Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture (2013), pp. 263--270.
- Ahmed, Abdalla G. M. Modular Duotone Weaving Design. Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 27--34.
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thin Striping. Contributions to Discrete Mathematics. Vol 9, No 2 (2014).
- Ahmed, Abdalla G. M.; Deussen, Oliver. Tuti Weaving, in
*Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture*, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi, 49--56.

sarah-marie belcastro, Adventures
in Mathematical Knitting. *American Scientist*, 101(2), March--April
2013, 124–133.

sarah-marie belcastro, You Do the Math. KnitNet, Winter 2001.

Brenda Dayne, Geek chic. Interweave Knits Fall 2003 pp.68--71+118. Now freely available online.

Mary Griffin, Wear Your Own Theory; A Beginner's Guide to Random Knitting. New Scientist, March 26, 1987, pp. 69--70.

Janice Hornicek, Color By Numbers. knitsimple, Spring/Summer 2006, pp. 22--25.

Debbie New, Celluar Automaton Knitting. Knitter's Magazine Number 49, Winter 1997, pp. 82--83.

Meg Swanson, Rita Buchanan, Möbius and Möbius II. Knitter's Magazine Winter 1991, pages 38 and 49.

Rachel Thomas, Career Interview: Fashion Designer, Plus magazine, Issue 53.

Margaret Wertheim, Crocheting the Hyperbolic Plane: An Interview with David Henderson and Daina Taimina. Cabinet: A Quarterly Magazine of Art & Culture Issue 16, Winter 2004. The article is available online here. (There are lots of articles that feature Daina's work, but this is the best one available online.)