(There must be more than just these. If you know of any other articles,
either academic or non-, please send me references...)
Last updated March 2022.
Articles/chapters appearing in academic publications
Everything Except Weaving: Alphabetical
- Adams, Colin; Fleming, Thomas; Koegel, Christopher. Brunnian Clothes on
the Runway: Not for the Bashful. American Mathematical Monthly, 111 (November
2004), no. 9, 741--748.
- Ashton, Ted. Fashioning Fine Fractals from Fiber, in Crafting by Concepts, A K Peters (2011), pp. 58--86. (Uses tatting and beading and cross-stitch to create fractals.)
- Baker, Ellie; Baker, Daniel; Wampler, Charles. Infinitely Invertible Infinity, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
83--92.
- Baker, Ellie; Lee, Kevin. Tessellated Seven-Color Tori, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi, 517--520.
- Baker, Ellie; Wampler, Charles. Invertible Infinity: A Toroidal Fashion Statement, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
49--56.
- belcastro, s-m; Yackel, Carolyn. About Knitting. Math Horizons, November
2006.
- belcastro, sarah-marie. Every Topological Surface Can Be Knit: A Proof,
Journal of Mathematics and the Arts 3(2) June 2009, 67–83.
- belcastro, sarah-marie. Generalized Helix Striping, in Crafting by Concepts, A K Peters (2011), pp. 28--49. (Focuses on knitting stripes.)
- belcastro, sarah-marie. Knitting Torus Knots and Links, in Figuring Fibers, American Mathematical Society (2018), pp. 119--136.
- belcastro, s-m; Yackel, Carolyn. Introduction (survey of the field), in Making Mathematics with Needlework, A K Peters (2007), pp. 1--10.
- belcastro, s-m; Szczepanski, Amy; Yackel, Carolyn. (K)not Cables, Braids, in Making Mathematics with Needlework, A K Peters (2007), pp. 118--134. Reprinted in Mitt. Dtsch. Math.-Ver. 16 (2008), no. 1, 26--34,
and EMS newsletter, Issue 70, December 2008, pp. 19--25. (Focuses on knitting braid words.)
- belcastro, s-m. Only Two Knit Stitches Can Create a Torus, in Making Mathematics with Needlework, A K Peters (2007), pp. 53--68.
- belcastro, s-m; Yackel, Carolyn. The Seven-Colored Torus: mathematically interesting and nontrivial to construct, in Homage to a Pied Puzzler, ed. by Ed Pegg, Jr., Alan H. Schoen, and Tom Rodgers, A K Peters (2009), pp. 25--32. (Analysis of discretization for creating knitting and crochet patterns.)
- belcastro, s-m; Yackel, Carolyn. Stop Those Pants!, in Making Mathematics with Needlework, A K Peters (2007), pp. 154--176. (Focuses on knitting a hyperbolic surface.)
- Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. Knitting for Fun: A
Recursive Sweater. in Fun with Algorithms, Lecture Notes in Computer Science,
Volume 4475, Springer, 2007, 53--65. article (.pdf)
- Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. On formal descriptions
for knitting recursive patterns. Journal of Mathematics and the Arts, 2(1)
March 2008, 9–27.
- Biedl, Therese; Horton, John D.; Lopez-Ortiz, Alejandro. Cross-Stitching
Using Little Thread. Proceedings of the 17th Canadian Conference on
Computational Geometry (CCCG'05), 199--202.
- Borkovitz, Debra K. A Temari Permutation Sampler, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
363--366.
- Calderhead, Kyle. Gosper-like Fractals and Intermeshed Crochet, in Figuring Fibers, American Mathematical Society (2018), pp. 31--56.
- Campbell, Lewis; Delp, Kelly; Matsumoto, Elisabetta. Bending Seams - How to Create Couture Curves, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence, 249--252.
- Carlson, Christopher; Paley, Nina; Gray, Theodore. Algorithmic Quilting, in Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture, ed. K. Delp, C. S. Kaplan, D. McKenna and R. Sarhangi, 231--238.
- Cochrane, Paul. Knitting Maths. Mathematics Teaching September 1988, pp.
26--28.
- Conway, J. H. Mrs. Perkins's quilt. Proc. Cambridge Philos. Soc. 60
(1964) 363--368. (This doesn't have even a reference to quilting, but the
quilting application of the mathematics is obvious to crafters.)
- Crum Brown, Alexander. 'On a Case of Interlacing Surfaces'. Proceedings of the Royal Society of Edinburgh volume 13 (1885--6), pp. 382--386. (see related models.)
- Curtis, S.A. An Application of Functional Programming: Quilting. in
Trends in Functional Programming, edited by Stephen Gilmore,
Vol. 2, Intellect, 2000.
- Curtis, S.A. Marble Mingling. Journal of Functional Programming, 16 (2006), issue 2, 129--136. (This has a passing mention of a quilting problem.)
- DeTemple, Duane. Reflection Borders for Patchwork Quilts. Mathematics
Teacher, February 1986, 138–143.
- Dunham, Douglas; Shier, Lisa. Embroidery of a Hyperbolic Fish Pattern, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
211--216.
- Ellison, Elaine Krajenke. The Sum of Odd Integers Quilt, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
505--508.
- Fisher, Gwen. The Quaternions Quilts. FOCUS 25 (2005), no. 1, 4--5.
- Fisher, Gwen. Quilt Designs Using Non-Edge-to-Edge Tilings by Squares,
in Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings 2003, ed. R. Sarhangi
and C. Sequin, 265--272.
- Fisher, Gwen; Mellor, Blake. Using tiling theory to generate angle weaves with beads. Journal of Mathematics and the Arts, Volume 6, Issue 4 (2012), 141--158.
- Funahashi, Tatsushi; Yamada, Masashi; Seki, Hirohisa; Itoh, Hidenori. A
technique for representing cloth shapes and generating 3-dimensional knitting
shapes. Forma 14 (1999), no. 3, 239--248.
- Fushida-Hardy, Shintaro. Crocheting an Isomorphism Between the Automorphism Groups of the Klein Quartic and Fano Plane, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence,
327--330.
- Givens, Berit N. The Chinese Remainder Theorem and Knitting Stitch Patterns, in Figuring Fibers, American Mathematical Society (2018), pp. 101--117.
- Goldstine, Susan; Baker, Ellie. Building a better bracelet: wallpaper patterns in bead crochet. Journal of Mathematics and the Arts, Volume 6, Issue 1 (2012), 5--17.
- Goldstine, Susan. Fortunatus's Purse, in Making Mathematics with Needlework, A K Peters (2007), pp. 104--117. (Focuses on sewing and topology.)
- Goldstine, Susan. Perfectly Simple, in Crafting by Concepts, A K Peters (2011), pp. 140--148. (Focuses on crocheting square dissections.)
- Goldstine, Susan. A Recursion in Knitting, in Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi,
395--398.
- Goldstine, Susan. A Survey of Symmetry Samplers, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
103--110.
- Goldstine, Susan. Self-Diagramming Lace, in Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, K. Fenyvesi,
519--522
- Goldstine, Susan. Eight Heptagons: The Double Torus Revisited, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
413--416.
- Gould, Frank; Gould, S. Louise. Exploring the Projective Plane via Variations on the Faceted Octahedron.
Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 507--508
- Gould, S. Louise. Triply Periodic Polyhedra in Euclidean Three-Dimensional Space, in Figuring Fibers, American Mathematical Society (2018), pp. 139--172.
- Grishanov, S.A.; Cassidy, T; Spencer, D.J. A model of the loop formation
process on knitting machines using finite automata theory. Applied Mathematical
Modelling 21(7) July 1997, 455–465.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part I: An Introduction to Topological Methods. Textile Research Journal 79 (2009), no. 8, 702--713.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures. Textile Research Journal 79 (2009), no. 9, 822--36.
- Grishanov, S.A.; Meshkov, V.R.; Vassiliev, V.A. Recognizing textile structures by finite type invariants. J. Knot Theory Ramifications 18 (2011) no. 2, 209--35.
- Grishanov, S.A.; Vassiliev, V.A. Invariants of Links in 3-Manifolds and Splitting Problem of Textile Structures. J. Knot Theory Ramifications 20 (2011), 345--370.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander.
Kauffman-type polynomial invariants of doubly-periodic structures.
J. Knot Theory Ramifications Vol. 16, No. 6 (2007) 779--788.
- Grishanov, S.;Tausif, M; Russell, S.J. Characterisation of fibre entanglement in nonwoven fabrics based on knot theory. Composites Science and Technology 72 (2012) 1331--1337.
- Grünbaum, Branko. Periodic Ornamentation of the Fabric Plane:
Lessons from Peruvian Fabrics. In Symmetry Comes of Age: The Role of Pattern in
Culture, pp. 18--64. University of Washington Press, 2004.
- Guo, Runbo; Lin, Jenny; Narayanan, Vidya; McCann, James. Representing Crochet with Stitch Meshes,
SCF '20: Symposium on Computational Fabrication, November 2020, Article No.: 4, pp. 1--8.
- Harris, Mary. Mathematics and Fabrics. Mathematics Teaching 120 (1987),
43--45.
- Henderson, David W.; Taimina, Daina. Crocheting the hyperbolic plane.
Math. Intelligencer 23 (2001), no. 2, 17--28. article
(.pdf)
- Herrmann, Diane. Diaper Patterns in Needlepoint, in Crafting by Concepts, A K Peters (2011), pp. 87--109.
- Hofmann, Megan; Albaugh, Lea; Sethapakdi, Ticha; Hodgins, Jessica; hudson, Scott; McCann, Jim; Mankoff, Jen. KnitPick: Programming and Modifying Complex Knitted Textures for Machine and Hand Knitting, Carnegie Mellon Textile Lab preprint.
- Holden, Joshua. The Graph Theory of Blackwork Embroidery, in Making Mathematics with Needlework, A K Peters (2007), pp. 135--153.
- Holden, Joshua. The Complexity of Braids, Cables, and Weaves Modeled with Stranded Cellular Automata, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
463--466.
- Holden, Joshua; Holden, Lana. Hyperbolic Tilings with Truly Hyperbolic Crochet Motifs.
Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 405--408.
- Holden, Joshua; Holden, Lana. Modeling Braids, Cables, and Weaves with Stranded Cellular Automata, in Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi,
127--134.
- Holden, Lana. Picking Up Stitches and Diophantine Equations, in Making Mathematics with Needlework, A K Peters (2007), pp. 29--39. (Focuses on knitting in different directions.)
- Igarashi, Yuki; Igarashi, Takeo; Suzuki, Hiromasa. Knitting a 3D Model.
Computer Graphics Forum (Proceedings of Pacific Graphics 2008), 27(7), Oct.
2008, 1737–1743.
- Irvine, Veronika. Broadening the Palette for Bobbin Lace: A Combinatorial Approach.
Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 191--198.
- Irvine, Veronika; Ruskey, Frank. Developing a mathematical model for bobbin lace.
Journal of Mathematics and the Arts, Volume 8, Issue 3--4 (2014), 95--110.
- Irvine, Veronika; Ruskey, Frank. Aspects of Symmetry in Bobbin Lace, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
205--212.
- Irvine, Veronika; Biedl, Therese; Kaplan, Craig S. Quasiperiodic bobbin lace patterns, Journal of Mathematics and the Arts, 14:3 (2020), pp. 177--198.
- Irving, Claire. Making the Real Projective Plane. Math. Gazette
November 2005, 417--423. (This focuses on knitted models.)
- Isaksen, Daniel; Petrofsky, Al. Mobius knitting, in Bridges:
Mathematical Connections in Art, Music, and Science, Conference Proceedings
1999, ed. R. Sarhangi, 1999, 67--76. article
- Kaldor, Jonathan M.; James, Doug L.; Marschner, Steve. Simulating knitted cloth
at the yarn level. International Conference on Computer Graphics and
Interactive Techniques, ACM SIGGRAPH 2008 papers, Article No. 65. ACM Press,
2008. two versions of the paper.
- Knittel, Chelsea E.; Tanis, Michael; Stoltzfus, Amy L.; Castle, Toen; Kamien, Randall D.; Dion, Genevieve. Modelling textile structures using bicontinuous surfaces, Journal of Mathematics and the Arts, 14:4 (2020) , pp. 331--344.
- Liebscher, U., and Weber, M., Topological Studies of Textiles I. Fundamentals. Textiltechnik 30(1), 58--61 (1980).
- Liebscher, U., and Weber, M., Topological Studies of Textiles II. Applications and Examples. Textiltechnik 30(1), 30(3) 176--178 (1980).
- Lin, Jenny; McCann, Jim. An Artin Braid Group Representation of Knitting Machine State with Applications to Validation and Optimization of Fabrication Plans, Carnegie Mellon Textile Lab preprint.
- Mabbs, Louise. Fabric Sculpture—Jacobs Ladder. In Bridges London:
Conference Proceedings 2006, pp. 561–568. Tarquin Publications, 2006.
- Mallos, James. Triangle-Strip Knitting. Hyperseeing: Proceedings of ISAMA
2010, Summer 2010, 111–116.
- Markande, Shashank; Matsumoto, Elisabetta. Knotty Knits are Tangles in Tori, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
103--112.
- Matsumoto, Elisabetta, Quilting the Klein Quartic, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
411--414.
- Matsumoto, Elisabetta; Segerman, Henry; Serriere, Fabienne. Mobius Cellular Automata Scarves, in Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, K. Fenyvesi,
523--526.
- McCann, James; Albaugh, Lea; Narayanan, Vidya; Grow, April; Matusik, Wojciech; Mankoff, Jennifer; Hodgins, Jessica. A compiler for 3D machine knitting. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2016
Volume 35 Issue 4, July 2016, Article No. 49. (project page)
- Narayanan, Vidya; Albaugh, Lea; Hodgins, Jessica; Coros, Stelian; McCann, James. Automatic Machine Knitting of 3D Meshes,
ACM Transactions on Graphics, Volume 37, Issue 3, June 2018, Article No.: 35, pp. 1--15.
- Narayanan, Vidya; Wu, Kui; Yuksel, Cem; McCann, James. Visual Knitting Machine Programming, ACM Trans. Graph. 38, 4, Article 63 (July 2019), 13 pages.
- Nimershiem, Barbara E. Piecing Together Link Complements, in Figuring Fibers, American Mathematical Society (2018), pp. 175--224.
- Morton, H.R.; Grishanov, S. Doubly periodic textile patterns. J. Knot Theory Ramifications 18 (2009), 1597--1622.
- Osinga, Hinke M.; Krauskopf, Bernd. Crocheting the Lorenz manifold. The
Mathematical Intelligencer 26 (2004), no. 4, 25--37. article
- Osinga, Hinke M.; Krauskopf, Bernd. Visualizing curvature on the Lorenz
manifold. Journal of Mathematics and the Arts 1(2): 113-123, 2007. article
- Peters, Emily. A Knitted Cross-Cap, in Crafting by Concepts, A K Peters (2011), pp. 50--57.
- Pickett, Barbara Setsu. Sashiko: the Stitched Geometry of Rural Japan, in
Bridges London: Conference Proceedings 2006 pp. 211–214. Tarquin
Publications, 2006.
- Reid, Miles. The Knitting of Surfaces. Eureka - The Journal of the
Archimedeans 34 (1971), pp21-26.
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 1. 2-Manifold 2, Autumn 1982, 9--14.
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 2: the Boy's Surface. 2-Manifold, (the next issue), 10--21.
- Ross, Joan. How to Make a Mobius Hat by Crocheting. Mathematics Teacher
78, (1985) 268--269.
- Seaton, Katherine. Sphericons and D-forms: a crocheted connection, Journal of Mathematics and the Arts, 11:4 (2017), pp. 187--202.
- Seaton, Katherine. Devising a `Purist Knitting Aesthetic' Six-Colored Mobius Band, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence,
355--358.
- Seaton, Katherine. Textile D-forms and D4d, Journal of Mathematics and the Arts, 15:3-4 (2021), pp. 207--217.
- Shepherd, Mary D.; with belcastro, sarah-marie and Yackel, Carolyn. Group Actions in Cross-Stitch, in Crafting by Concepts, A K Peters (2011), pp. 110--139.
- Shepherd, Mary D. Groups, Symmetry and Other Explorations with Cross
Stitch. Electronic Proceedings of the Missouri MAA, 2007 Meeting. article
(.doc)
- Shepherd, Mary D. Symmetry Patterns in Cross Stitch, in Making Mathematics with Needlework, A K Peters (2007), pp. 69--89.
- Shepherd, Mary D. Variations on Snake Trail Quilting Patterns, in Figuring Fibers, American Mathematical Society (2018), pp. 83--99.
- Swanson, Irena. Quilting Semiregular Tessellations, in Crafting by Concepts, A K Peters (2011), pp. 186--232.
- Szczepanski, Amy. Knit Knit Revolution, in Crafting by Concepts, A K Peters (2011), pp. 1--27.
- Szczepanski, Amy. Quilted Möbius Band, in Making Mathematics with Needlework, A K Peters (2007), pp. 11--28.
- Taalman, Laura; Carolyn Yackel. Wallpaper Patterns for Lattice Designs, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
223--230.
- Trnkova, Maria. Hyperbolic flowers, Journal of Mathematics and the Arts, 14:3 (2020), pp. 258--267.
- Trustrum, G. B. Mrs Perkins's quilt. Proc. Cambridge Philos. Soc. 61
1965 7--11. (This doesn't have even a reference to quilting, but the quilting
application of the mathematics is obvious to crafters.)
- Vandermonde, Alexandre-The'ophile. Remarques sur les Probl`emes de
Situation. Histoire de l' Acade'mie des Sciences (Paris) (1771), 566--574.
(Mainly about knight's tours on chessboards, he does describe paths through
space for rows of stockinette.)
- Wildstrom, D. Jacob. The Sierpinski Variations, in Making Mathematics with Needlework, A K Peters (2007), pp. 40--52. (Focuses on cellular automata in crochet.)
- Wildstrom, D. Jacob. Structural Qualities and Serial Construction of Tournament Braids.
Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 463--466. (The mathematics was motivated by constructing braids in crochet.)
- Wildstrom, D. Jacob. More Granny, Less Square, in Figuring Fibers, American Mathematical Society (2018), pp. 7--29.
- Wildstrom, D. Jacob. Symmetries of Intermeshed Crochet Designs, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
203--210.
- Williams, Mary C.; Sharp, John. A Collaborative Parabolic Quilt, in
Bridges: Mathematical Connections in Art, Music, and Science, Conference
Proceedings 2002, ed. R. Sarhangi, 143--149.
- Williams, Mary C. Quilts Inspired by Mathematics, in Meeting Alhambra,
ISAMA-BRIDGES Conference Proceedings 2003, ed. R. Sarhangi and C. Sequin,
393--399.
- Wu, Kui; Gao, Xifeng; Ferguson, Zachary; Panozzo, Daniele; Yuksel, Cem. Stitch Meshing. ACM Trans. Graph. 37, 4, Article 130 (August 2018), 14 pages.
- Wu, Kui; Swan, Hannah; Yuksel, Cem. Knittable Stitch Meshes. ACM 82 Trans. Graph. 36, 4, Article 1 (July 2018), 13 pages.
- Yackel, C. A. Embroidering Polyhedra on Temari Balls. In Math+Art=X Boulder,
CO Conference Proceedings 2005, pp. 183–187.
- Yackel, C. A. Marking a Physical Sphere with a Projected Platonic Solid. In
Bridges Banff: Proceedings 2009, pp. 123–130. Tarquin Publications,
2009.
- Yackel, Carolyn. Socks with Algebraic Structure, in Making Mathematics with Needlework, A K Peters (2007), pp. 90--103. (Focuses on knitting and group theory.)
- Yackel, Carolyn; with belcastro, sarah-marie. Spherical Symmetries of Temari, in Crafting by Concepts, A K Peters (2011), pp. 149--185.
- Yackel, Carolyn. Introduction (survey of the field), in Figuring Fibers, American Mathematical Society (2018), pp. 1--4.
- Yackel, Carolyn. Templeton Square Truchet Tiles, in Figuring Fibers, American Mathematical Society (2018), pp. 59--80.
- Yackel, Carolyn. Wallpaper patterns admissible in itajime shibori, Journal of Mathematics and the Arts, 15:3-4 (2021), pp. 232--244.
- Yuksel, Cem; Kaldor, Jonathan; James, Doug L.; Marschner, Steve. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Transactions on Graphics (Proc. of SIGGRAPH 2012), 31, 3, 37.
project page
Everything Except Weaving: Chronological
Prior to 1990
- Vandermonde, Alexandre-The'ophile. Remarques sur les Probl`emes de
Situation. Histoire de l' Acade'mie des Sciences (Paris) (1771), 566--574.
(Mainly about knight's tours on chessboards, he does describe paths through
space for rows of stockinette.)
- Crum Brown, Alexander. 'On a Case of Interlacing Surfaces'. Proceedings of the Royal Society of Edinburgh volume 13 (1885--6), pp. 382--386. (see related models.)
- Conway, J. H. Mrs. Perkins's quilt. Proc. Cambridge Philos. Soc. 60
(1964) 363--368. (This doesn't have even a reference to quilting, but the
quilting application of the mathematics is obvious to crafters.)
- Trustrum, G. B. Mrs Perkins's quilt. Proc. Cambridge Philos. Soc. 61
1965 7--11. (This doesn't have even a reference to quilting, but the quilting
application of the mathematics is obvious to crafters.)
- Reid, Miles. The Knitting of Surfaces. Eureka - The Journal of the
Archimedeans 34 (1971), pp21-26.
- Liebscher, U., and Weber, M., Topological Studies of Textiles I. Fundamentals. Textiltechnik 30(1), 58--61 (1980).
- Liebscher, U., and Weber, M., Topological Studies of Textiles II. Applications and Examples. Textiltechnik 30(1), 30(3) 176--178 (1980).
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 1. 2-Manifold 2, Autumn 1982, 9--14.
- Reid, Miles. Needlework Section: Knitting 2-Manifolds, 2: the Boy's Surface. 2-Manifold, (the next issue), 10--21.
- Ross, Joan. How to Make a Mobius Hat by Crocheting. Mathematics Teacher
78, (1985) 268--269.
- DeTemple, Duane. Reflection Borders for Patchwork Quilts. Mathematics
Teacher, February 1986, 138–143.
- Harris, Mary. Mathematics and Fabrics. Mathematics Teaching 120 (1987),
43--45.
- Cochrane, Paul. Knitting Maths. Mathematics Teaching September 1988, pp.
26--28.
1990--2000
- Isaksen, Daniel; Petrofsky, Al. Mobius knitting, in Bridges:
Mathematical Connections in Art, Music, and Science, Conference Proceedings
1999, ed. R. Sarhangi, 1999, 67--76. article
- Grishanov, S.A.; Cassidy, T; Spencer, D.J. A model of the loop formation
process on knitting machines using finite automata theory. Applied Mathematical
Modelling 21(7) July 1997, 455–465.
- Funahashi, Tatsushi; Yamada, Masashi; Seki, Hirohisa; Itoh, Hidenori. A
technique for representing cloth shapes and generating 3-dimensional knitting
shapes. Forma 14 (1999), no. 3, 239--248.
- Curtis, S.A. An Application of Functional Programming: Quilting. in
Trends in Functional Programming, edited by Stephen Gilmore,
Vol. 2, Intellect, 2000.
2001--2005
- Henderson, David W.; Taimina, Daina. Crocheting the hyperbolic plane.
Math. Intelligencer 23 (2001), no. 2, 17--28. article
(.pdf)
- Williams, Mary C.; Sharp, John. A Collaborative Parabolic Quilt, in
Bridges: Mathematical Connections in Art, Music, and Science, Conference
Proceedings 2002, ed. R. Sarhangi, 143--149.
- Fisher, Gwen. Quilt Designs Using Non-Edge-to-Edge Tilings by Squares,
in Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings 2003, ed. R. Sarhangi
and C. Sequin, 265--272.
- Williams, Mary C. Quilts Inspired by Mathematics, in Meeting Alhambra,
ISAMA-BRIDGES Conference Proceedings 2003, ed. R. Sarhangi and C. Sequin,
393--399.
- Osinga, Hinke M.; Krauskopf, Bernd. Crocheting the Lorenz manifold. The
Mathematical Intelligencer 26 (2004), no. 4, 25--37. article
- Grünbaum, Branko. Periodic Ornamentation of the Fabric Plane:
Lessons from Peruvian Fabrics. In Symmetry Comes of Age: The Role of Pattern in
Culture, pp. 18–64. University of Washington Press, 2004.
- Adams, Colin; Fleming, Thomas; Koegel, Christopher. Brunnian Clothes on
the Runway: Not for the Bashful. American Mathematical Monthly, 111 (November
2004), no. 9, 741--748.
- Biedl, Therese; Horton, John D.; Lopez-Ortiz, Alejandro. Cross-Stitching
Using Little Thread. Proceedings of the 17th Canadian Conference on
Computational Geometry (CCCG'05), 199--202.
- Fisher, Gwen. The Quaternions Quilts. FOCUS 25 (2005), no. 1, 4--5.
- Yackel, C. A. Embroidering Polyhedra on Temari Balls. In Math+Art=X Boulder,
CO Conference Proceedings 2005, pp. 183–187.
- Irving, Claire. Making the Real Projective Plane. Math. Gazette
November 2005, 417--423. (This focuses on knitted models.)
2006--2009
- Mabbs, Louise. Fabric Sculpture—Jacobs Ladder. In Bridges London:
Conference Proceedings 2006, pp. 561–568. Tarquin Publications, 2006.
- Curtis, S.A. Marble Mingling. Journal of Functional Programming, 16 (2006), issue 2, 129--136. (This has a passing mention of a quilting problem.)
- Pickett, Barbara Setsu. Sashiko: the Stitched Geometry of Rural Japan, in
Bridges London: Conference Proceedings 2006 pp. 211–214. Tarquin
Publications, 2006.
- belcastro, s-m; Yackel, Carolyn. About Knitting. Math Horizons, November
2006.
- belcastro, s-m; Yackel, Carolyn. Introduction (survey of the field), in Making Mathematics with Needlework, A K Peters (2007), pp. 1--10.
- belcastro, s-m; Szczepanski, Amy; Yackel, Carolyn. (K)not Cables, Braids, in Making Mathematics with Needlework, A K Peters (2007), pp. 118--134. Reprinted in Mitt. Dtsch. Math.-Ver. 16 (2008), no. 1, 26--34,
and EMS newsletter, Issue 70, December 2008, pp. 19--25. (Focuses on knitting braid words.)
- belcastro, s-m. Only Two Knit Stitches Can Create a Torus, in Making Mathematics with Needlework, A K Peters (2007), pp. 53--68.
- belcastro, s-m; Yackel, Carolyn. Stop Those Pants!, in Making Mathematics with Needlework, A K Peters (2007), pp. 154--176. (Focuses on knitting a hyperbolic surface.)
- Goldstine, Susan. Fortunatus's Purse, in Making Mathematics with Needlework, A K Peters (2007), pp. 104--117. (Focuses on sewing and topology.)
- Holden, Joshua. The Graph Theory of Blackwork Embroidery, in Making Mathematics with Needlework, A K Peters (2007), pp. 135--153.
- Holden, Lana. Picking Up Stitches and Diophantine Equations, in Making Mathematics with Needlework, A K Peters (2007), pp. 29--39. (Focuses on knitting in different directions.)
- Shepherd, Mary D. Symmetry Patterns in Cross Stitch, in Making Mathematics with Needlework, A K Peters (2007), pp. 69--89.
- Szczepanski, Amy. Quilted Möbius Band, in Making Mathematics with Needlework, A K Peters (2007), pp. 11--28.
- Wildstrom, D. Jacob. The Sierpinski Variations, in Making Mathematics with Needlework, A K Peters (2007), pp. 40--52. (Focuses on cellular automata in crochet.)
- Yackel, Carolyn. Socks with Algebraic Structure, in Making Mathematics with Needlework, A K Peters (2007), pp. 90--103. (Focuses on knitting and group theory.)
- Shepherd, Mary D. Groups, Symmetry and Other Explorations with Cross
Stitch. Electronic Proceedings of the Missouri MAA, 2007 Meeting. article
(.doc)
- Osinga, Hinke M.; Krauskopf, Bernd. Visualizing curvature on the Lorenz
manifold. Journal of Mathematics and the Arts 1(2): 113-123, 2007. article
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander.
Kauffman-type polynomial invariants of doubly-periodic structures.
J. Knot Theory Ramifications Vol. 16, No. 6 (2007) 779--788.
- Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. Knitting for Fun: A
Recursive Sweater. in Fun with Algorithms, Lecture Notes in Computer Science,
Volume 4475, Springer, 2007, 53--65. article (.pdf)
- Bernasconi, Anna; Bodei, Chiara; Pagli, Linda. On formal descriptions
for knitting recursive patterns. Journal of Mathematics and the Arts, 2(1)
March 2008, 9–27.
- Igarashi, Yuki; Igarashi, Takeo; Suzuki, Hiromasa. Knitting a 3D Model.
Computer Graphics Forum (Proceedings of Pacific Graphics 2008), 27(7), Oct.
2008, 1737–1743.
- Kaldor, Jonathan M.; James, Doug L.; Marschner, Steve. Simulating knitted cloth
at the yarn level. International Conference on Computer Graphics and
Interactive Techniques, ACM SIGGRAPH 2008 papers, Article No. 65. ACM Press,
2008. two versions of the paper.
- belcastro, sarah-marie. Every Topological Surface Can Be Knit: A Proof,
Journal of Mathematics and the Arts 3(2) June 2009, 67–83.
- belcastro, s-m; Yackel, Carolyn. The Seven-Colored Torus: mathematically interesting and nontrivial to construct, in Homage to a Pied Puzzler, ed. by Ed Pegg, Jr., Alan H. Schoen, and Tom Rodgers, A K Peters (2009), pp. 25--32. (Analysis of discretization for creating knitting and crochet patterns.)
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part I: An Introduction to Topological Methods. Textile Research Journal 79 (2009), no. 8, 702--713.
- Grishanov, Sergei; Meshkov, Vadim; Omelchenko, Alexander. A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures. Textile Research Journal 79 (2009), no. 9, 822--36.
- Morton, H.R.; Grishanov, S. Doubly periodic textile patterns. J. Knot Theory Ramifications 18 (2009), 1597--1622.
- Yackel, C. A. Marking a Physical Sphere with a Projected Platonic Solid. In
Bridges Banff: Proceedings 2009, pp. 123–130. Tarquin Publications,
2009.
2010--2015
- Mallos, James. Triangle-Strip Knitting. Hyperseeing: Proceedings of ISAMA
2010, Summer 2010, 111–116.
- Grishanov, S.A.; Meshkov, V.R.; Vassiliev, V.A. Recognizing textile structures by finite type invariants. J. Knot Theory Ramifications 18 (2011) no. 2, 209--35.
- Grishanov, S.A.; Vassiliev, V.A. Invariants of Links in 3-Manifolds and Splitting Problem of Textile Structures. J. Knot Theory Ramifications 20 (2011), 345--370.
- Ashton, Ted. Fashioning Fine Fractals from Fiber, in Crafting by Concepts, A K Peters (2011), pp. 58--86. (Uses tatting and beading and cross-stitch to create fractals.)
- belcastro, sarah-marie. Generalized Helix Striping, in Crafting by Concepts, A K Peters (2011), pp. 28--49. (Focuses on knitting stripes.)
- Goldstine, Susan. Perfectly Simple, in Crafting by Concepts, A K Peters (2011), pp. 140--148. (Focuses on crocheting square dissections.)
- Herrmann, Diane. Diaper Patterns in Needlepoint, in Crafting by Concepts, A K Peters (2011), pp. 87--109.
- Peters, Emily. A Knitted Cross-Cap, in Crafting by Concepts, A K Peters (2011), pp. 50--57.
- Shepherd, Mary D.; with belcastro, sarah-marie and Yackel, Carolyn. Group Actions in Cross-Stitch, in Crafting by Concepts, A K Peters (2011), pp. 110--139.
- Swanson, Irena. Quilting Semiregular Tessellations, in Crafting by Concepts, A K Peters (2011), pp. 186--232.
- Szczepanski, Amy. Knit Knit Revolution, in Crafting by Concepts, A K Peters (2011), pp. 1--27.
- Yackel, Carolyn; with belcastro, sarah-marie. Spherical Symmetries of Temari, in Crafting by Concepts, A K Peters (2011), pp. 149--185.
- Goldstine, Susan; Baker, Ellie. Building a better bracelet: wallpaper patterns in bead crochet. Journal of Mathematics and the Arts, Volume 6, Issue 1 (2012), 5--17.
- Yuksel, Cem; Kaldor, Jonathan; James, Doug L.; Marschner, Steve. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Transactions on Graphics (Proc. of SIGGRAPH 2012), 31, 3, 37.
project page
- Wildstrom, D. Jacob. Structural Qualities and Serial Construction of Tournament Braids.
Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 463--466. (The mathematics was motivated by constructing braids in crochet.)
- Gould, Frank; Gould, S. Louise. Exploring the Projective Plane via Variations on the Faceted Octahedron.
Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 507--508
- Irvine, Veronika. Broadening the Palette for Bobbin Lace: A Combinatorial Approach.
Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), pp. 191--198.
- Fisher, Gwen; Mellor, Blake. Using tiling theory to generate angle weaves with beads. Journal of Mathematics and the Arts, Volume 6, Issue 4 (2012), 141--158.
- Grishanov, S.;Tausif, M; Russell, S.J. Characterisation of fibre entanglement in nonwoven fabrics based on knot theory. Composites Science and Technology 72 (2012) 1331--1337.
- Holden, Joshua; Holden, Lana. Hyperbolic Tilings with Truly Hyperbolic Crochet Motifs.
Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 405--408.
- Irvine, Veronika; Ruskey, Frank. Developing a mathematical model for bobbin lace.
Journal of Mathematics and the Arts, Volume 8, Issue 3--4 (2014), 95--110.
- Carlson, Christopher; Paley, Nina; Gray, Theodore. Algorithmic Quilting, in Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture, ed. K. Delp, C. S. Kaplan, D. McKenna and R. Sarhangi, 231--238.
2016--2021
- Goldstine, Susan. A Recursion in Knitting, in Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi,
395--398.
- Holden, Joshua; Holden, Lana. Modeling Braids, Cables, and Weaves with Stranded Cellular Automata, in Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi,
127--134.
- McCann, James; Albaugh, Lea; Narayanan, Vidya; Grow, April; Matusik, Wojciech; Mankoff, Jennifer; Hodgins, Jessica. A compiler for 3D machine knitting. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2016
Volume 35 Issue 4, July 2016, Article No. 49. (project page)
- Seaton, Katherine. Sphericons and D-forms: a crocheted connection, Journal of Mathematics and the Arts, 11:4 (2017), pp. 187--202.
- Baker, Ellie; Wampler, Charles. Invertible Infinity: A Toroidal Fashion Statement, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
49--56.
- Goldstine, Susan. A Survey of Symmetry Samplers, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
103--110.
- Irvine, Veronika; Ruskey, Frank. Aspects of Symmetry in Bobbin Lace, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
205--212.
- Borkovitz, Debra K. A Temari Permutation Sampler, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
363--366.
- Matsumoto, Elisabetta, Quilting the Klein Quartic, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
411--414.
- Holden, Joshua. The Complexity of Braids, Cables, and Weaves Modeled with Stranded Cellular Automata, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C.H. Sequin, and K. Fenyvesi,
463--466.
- Narayanan, Vidya; Albaugh, Lea; Hodgins, Jessica; Coros, Stelian; McCann, James. Automatic Machine Knitting of 3D Meshes,
ACM Transactions on Graphics, Volume 37, Issue 3, June 2018, Article No.: 35, pp. 1--15.
- Wu, Kui; Swan, Hannah; Yuksel, Cem. Knittable Stitch Meshes. ACM 82 Trans. Graph. 36, 4, Article 1 (July 2018), 13 pages.
- Matsumoto, Elisabetta; Segerman, Henry; Serriere, Fabienne. Mobius Cellular Automata Scarves, in Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, K. Fenyvesi,
523--526.
- Goldstine, Susan. Self-Diagramming Lace, in Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, K. Fenyvesi,
519--522
- Wu, Kui; Gao, Xifeng; Ferguson, Zachary; Panozzo, Daniele; Yuksel, Cem. Stitch Meshing. ACM Trans. Graph. 37, 4, Article 130 (August 2018), 14 pages.
- Yackel, Carolyn. Introduction (survey of the field), in Figuring Fibers, American Mathematical Society (2018), pp. 1--4.
- Wildstrom, D. Jacob. More Granny, Less Square, in Figuring Fibers, American Mathematical Society (2018), pp. 7--29.
- Calderhead, Kyle. Gosper-like Fractals and Intermeshed Crochet, in Figuring Fibers, American Mathematical Society (2018), pp. 31--56.
- Yackel, Carolyn. Templeton Square Truchet Tiles, in Figuring Fibers, American Mathematical Society (2018), pp. 59--80.
- Shepherd, Mary D. Variations on Snake Trail Quilting Patterns, in Figuring Fibers, American Mathematical Society (2018), pp. 83--99.
- Givens, Berit N. The Chinese Remainder Theorem and Knitting Stitch Patterns, in Figuring Fibers, American Mathematical Society (2018), pp. 101--117.
- belcastro, sarah-marie. Knitting Torus Knots and Links, in Figuring Fibers, American Mathematical Society (2018), pp. 119--136.
- Gould, S. Louise. Triply Periodic Polyhedra in Euclidean Three-Dimensional Space, in Figuring Fibers, American Mathematical Society (2018), pp. 139--172.
- Nimershiem, Barbara E. Piecing Together Link Complements, in Figuring Fibers, American Mathematical Society (2018), pp. 175--224.
- Hofmann, Megan; Albaugh, Lea; Sethapakdi, Ticha; Hodgins, Jessica; hudson, Scott; McCann, Jim; Mankoff, Jen. KnitPick: Programming and Modifying Complex Knitted Textures for Machine and Hand Knitting, Carnegie Mellon Textile Lab preprint.
- Narayanan, Vidya; Wu, Kui; Yuksel, Cem; McCann, James. Visual Knitting Machine Programming, ACM Trans. Graph. 38, 4, Article 63 (July 2019), 13 pages.
- Wildstrom, D. Jacob. Symmetries of Intermeshed Crochet Designs, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
203--210.
- Dunham, Douglas; Shier, Lisa. Embroidery of a Hyperbolic Fish Pattern, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
211--216.
- Ellison, Elaine Krajenke. The Sum of Odd Integers Quilt, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
505--508.
- Baker, Ellie; Lee, Kevin. Tessellated Seven-Color Tori, in
Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi, 517--520.
- Baker, Ellie; Baker, Daniel; Wampler, Charles. Infinitely Invertible Infinity, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
83--92.
- Taalman, Laura; Carolyn Yackel. Wallpaper Patterns for Lattice Designs, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
223--230.
- Goldstine, Susan. Eight Heptagons: The Double Torus Revisited, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
413--416.
- Markande, Shashank; Matsumoto, Elisabetta. Knotty Knits are Tangles in Tori, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
103--112.
- Irvine, Veronika; Biedl, Therese; Kaplan, Craig S. Quasiperiodic bobbin lace patterns, Journal of Mathematics and the Arts, 14:3 (2020), pp. 177--198.
- Trnkova, Maria. Hyperbolic flowers, Journal of Mathematics and the Arts, 14:3 (2020), pp. 258--267.
- Knittel, Chelsea E.; Tanis, Michael; Stoltzfus, Amy L.; Castle, Toen; Kamien, Randall D.; Dion, Genevieve. Modelling textile structures using bicontinuous surfaces, Journal of Mathematics and the Arts, 14:4 (2020) , pp. 331--344.
- Guo, Runbo; Lin, Jenny; Narayanan, Vidya; McCann, James. Representing Crochet with Stitch Meshes,
SCF '20: Symposium on Computational Fabrication, November 2020, Article No.: 4, pp. 1--8.
- Campbell, Lewis; Delp, Kelly; Matsumoto, Elisabetta. Bending Seams - How to Create Couture Curves, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence, 249--252.
- Fushida-Hardy, Shintaro. Crocheting an Isomorphism Between the Automorphism Groups of the Klein Quartic and Fano Plane, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence,
327--330.
- Seaton, Katherine. Devising a `Purist Knitting Aesthetic' Six-Colored Mobius Band, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence,
355--358.
- Seaton, Katherine. Textile D-forms and D4d, Journal of Mathematics and the Arts, 15:3-4 (2021), pp. 207--217.
- Yackel, Carolyn. Wallpaper patterns admissible in itajime shibori, Journal of Mathematics and the Arts, 15:3-4 (2021), pp. 232--244.
- Lin, Jenny; McCann, Jim. An Artin Braid Group Representation of Knitting Machine State with Applications to Validation and Optimization of Fabrication Plans, Carnegie Mellon Textile Lab preprint.
Weaving: Alphabetical
- Ahmed, Abdalla G. M. AA Weaving.
Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture (2013), pp. 263--270.
- Ahmed, Abdalla G. M. Modular Duotone Weaving Design.
Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 27--34.
- Ahmed, Abdalla G. M.; Deussen, Oliver. Tuti Weaving, in Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi,
49--56.
- Ahmed, Abdalla; Deussen, Oliver. Tuti Inter-Weaving, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C. H. Sequin, and K. Fenyvesi,
229--236.
- Ahmed, Abdalla G.M.; Deussen, Oliver. Monochrome Map Weaving with Truchet-Like Tiles, in Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, and K. Fenyvesi,
45--52}.
- Ahmed, Abdalla G. M Tuti-Like Interweaving, in Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
195--202.
- Akleman, Ergun; Chen, Jianer;
Gross, Jonathan L.; Hu, Shiyu. A Topologically Complete Theory of Weaving, SIAM J. Disc. Math., Vol. 34 (2020), No. 4, pp. 2457--2480.
- Akleman, Ergun; Chen, Jianer; Xing, Qing; Gross, Jonathan L. Cyclic
plain-weaving on polygonal mesh surfaces with graph rotation systems. ACM
Transactions on Graphics, Proceedings of ACM SIGGRAPH 2009 28(3) August 2009,
Article No. 78.
- Burkholder, Douglas G. Brunnian Weavings.
Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture (2010), pp. 263--270.
- Chen, Yen-Lin; Akleman, Ergun; Chen, Jianer; Xing, Qing. Designing Biaxial
Textile Weaving Patterns. Hyperseeing: Proceedings of ISAMA 2010, Summer 2010,
53–62.
- Clapham, C. R. J. The strength of a fabric. Bull. London Math. Soc. 26
(1994), no. 2, 127--131.
- Clapham, C. R. J. The bipartite tournament associated with a fabric.
Discrete Math. 57 (1985), no. 1-2, 195--197.
- Clapham, C. R. J. When a three-way fabric hangs together. J. Combin.
Theory Ser. B 38 (1985), no. 2, 190.
- Clapham, C. R. J. When a fabric hangs together. Bull. London Math. Soc.
12 (1980), no. 3, 161--164.
- Damrau, Milena. Sombrero Vueltiao---Weaving Mathematics, in Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
359--362.
- Delaney, Cathy. When a Fabric Hangs Together. Ars Combinatoria 21-A
(1986), 71--79.
- Enns, T. C. An efficient algorithm determining when a fabric hangs together.
Geometriae Dedicata, 15 (1984), 259–260.
- Feijs, Loe and Toeters, Marina. A Cellular Automaton for Pied-de-poule (Houndstooth), in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C. H. Sequin, and K. Fenyvesi,
403--406.
- Fukuda, Mizuki; Kotani, Motoko; Mahmoudi, Sonia. Construction and Classification of Combinatorial Weaving Diagrams. preprint 2021.
- Grünbaum, B.; Shephard, G. C. Satins and Twills: Introduction to the
Geometry of Fabrics. Mathematics Magazine, vol. 53, no. 3, May 1980, p.
139--161.
- Grünbaum, B.; Shephard, G. C. A catalogue of isonemal fabrics. Discrete Geometry and Convexity, Annals of the New York Academy of Sciences 440
(1985), 279–298.
- Grünbaum, B.; Shephard, G. C. An extension to the catalogue of
isonemal fabrics. Discrete Math. 60 (1986), 155–192.
- Grünbaum, B.; Shephard, G. C. Isonemal fabrics. Amer. Math. Monthly
95 (1988), 5–30.
- Holden, Joshua. Markov Chains, Coptic Bananas, and Egyptian Tombs: Generating Tablet Weaving Designs Using Mean-Reverting Processes, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
419--422.
- Holden, Joshua. Markov Chains and Egyptian Tombs: Generating "Egyptian" Tablet Weaving Designs Using Mean-Reverting Processes, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence, 165--172.
- Hoskins, J. A.; Thomas, R. S. D. The patterns of the isonemal two-colour
two-way two-fold fabrics. Bull. Austral. Math. Soc. 44 (1991), no. 1, 33--43.
- Hoskins, J. A.; Hoskins, W. D. An algorithm for color factoring a
matrix. Current trends in matrix theory (Auburn, Ala., 1986), 147--154,
North-Holland, New York, 1987.
- Hoskins, J. A.; Stanton, R. G.; Street, A. P. The compound twillins:
reflection at an element. Ars Combin. 17 (1984), 177--190.
- Hoskins, Janet A.; Street, Anne Penfold; Stanton, R. G. Binary
interlacement arrays, and how to find them. Proceedings of the thirteenth
Manitoba conference on numerical mathematics and computing (Winnipeg, Man.,
1983). Congr. Numer. 42 (1984), 321--376.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Balanced
twills with bounded float length. Proceedings of the fourteenth Southeastern
conference on combinatorics, graph theory and computing (Boca Raton, Fla.,
1983). Congr. Numer. 40 (1983), 77--89.
- Hoskins, J. A. Binary interlacement arrays and structural
cross-sections. Proceedings of the fourteenth Southeastern conference on
combinatorics, graph theory and computing (Boca Raton, Fla., 1983). Congr.
Numer. 40 (1983), 63--76.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Twills
with bounded float length. Bull. Austral. Math. Soc. 28 (1983), no. 2,
255--281.
- Hoskins, J. A.; Stanton, R. G.; Street, Anne Penfold. Enumerating the
compound twillins. Congr. Numer. 38 (1983), 3--22.
- Hoskins, J. A.; Hoskins, W. D.; Street, Anne Penfold; Stanton, R. G.
Some elementary isonemal binary matrices. Ars Combin. 13 (1982), 3--38.
- Hoskins, J. A. Factoring binary matrices: a weaver's approach.
in Combinatorial mathematics, IX (Brisbane, 1981), pp. 300--326, Lecture Notes in
Math., 952, Springer, Berlin-New York, 1982.
- Hoskins, Janet A.; Hoskins, W. D. The solution of certain matrix
equations arising from the structural analysis of woven fabrics. Ars Combin. 11
(1981), 51--59.
- Lucas, E. Application de l'Arithmétique à la Construction de
l'Armure des Satins Réguliers, Paris, 1867.
- Lucas, E. Principii fondamentali della geometria dei tessute,
L'Ingegneria Civile e le Arti Industriali, 6 (1880) 104--111, 113--115.
- Lucas, E. Les principes fondamentaux de la géometrie des tissus,
Compte Rendu de L'Association Française fpour l'Avancement des Sciences, 40
(1911) 72--88.
- Oates-Williams, Sheila; Street, Anne Penfold. Universal fabrics. in
Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference
on Combinatorial Mathematics Held at Deakin University, Geelong, Australia,
August 2529, 1980, Lecture Notes in Mathematics 884, pp. 355–359.
Springer, 1981.
- Pedersen, Jean J. Some isonemal fabrics on polyhedral surfaces. In The
Geometric Vein: The Coxeter Festschrift, ed. by Chandler Davis, Branko Grünbaum, and F. A. Sherk, pp. 99–122, Springer-Verlag, 1981.
- Pedersen, Jean. Geometry: the unity of theory and practice. Math.
Intelligencer 5 (1983), no. 4, 37--49.
- Philips, Tony. Inside-out Frieze Symmetries in Ancient Peruvian
Weavings. AMS
Feature Column October 2008.
- Roth, Richard L. The symmetry groups of periodic isonemal fabrics. Geom.
Dedicata 48 (1993), 191–210.
- Roth, Richard L. Perfect colorings of isonemal fabrics using two colors.
Geom. Dedicata 56 (1995), 307–326.
- Shorter, S.A. The Mathematical Theory of the Sateen Arrangement. The
Mathematical Gazette. 10 (1920), p.92--97.
- Thomas, R.S.D. Isonemal prefabrics with only parallel axes of symmetry.
Discrete Mathematics 309 (9), 6 May 2009, 2696--2711. arXiv version
- Thomas, R.S.D. Isonemal Prefabrics with Perpendicular Axes of Symmetry. Utilitas Mathematica, 82 (2010), 33--70. arXiv version.
- Thomas, R.S.D. Isonemal Prefabrics with No Axes of Symmetry. Discrete Mathematics 310 (2010), 1307--1324. arXiv version.
- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thin striping.
Bulletin of the Australian Mathematical Society, 83, No. 1, 63-86 (2011).
- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thick striping.
Bulletin of the Australian Mathematical Society,Volume 85, Issue 02 (April
2012), pp 325--349.
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thick Striping. Contributions to Discrete Mathematics. Vol 8, No 1 (2013).
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thin Striping. Contributions to Discrete Mathematics. Vol 9, No 2 (2014).
- Woods, H. J. The geometrical basis of
pattern design. Part II—Nets and Sateens. Textile Institute of Manchester Journal, 26 (1935),
T293–T308.
- Zelinka, Bohdan. Isonemality and mononemality of woven fabrics. Applications of Mathematics, 28(3) 1983, 194–198.
- Zelinka, Bohdan. Symmetries of woven fabrics. Applications of Mathematics,
29(1) 1984, 14–22.
Weaving: Chronological
Prior to 1980
- Lucas, E. Application de l'Arithmétique à la Construction de
l'Armure des Satins Réguliers, Paris, 1867.
- Lucas, E. Principii fondamentali della geometria dei tessute,
L'Ingegneria Civile e le Arti Industriali, 6 (1880) 104--111, 113--115.
- Lucas, E. Les principes fondamentaux de la géometrie des tissus,
Compte Rendu de L'Association Française fpour l'Avancement des Sciences, 40
(1911) 72--88.
- Shorter, S.A. The Mathematical Theory of the Sateen Arrangement. The
Mathematical Gazette. 10 (1920), p.92--97.
- Woods, H. J. The geometrical basis of
pattern design. Part II—Nets and Sateens. Textile Institute of Manchester Journal, 26 (1935),
T293–T308.
1980--1984
- Clapham, C. R. J. When a fabric hangs together. Bull. London Math. Soc.
12 (1980), no. 3, 161--164.
- Grünbaum, B.; Shephard, G. C. Satins and Twills: Introduction to the
Geometry of Fabrics. Mathematics Magazine, vol. 53, no. 3, May 1980, p.
139--161.
- Oates-Williams, Sheila; Street, Anne Penfold. Universal fabrics. in
Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference
on Combinatorial Mathematics Held at Deakin University, Geelong, Australia,
August 2529, 1980, Lecture Notes in Mathematics 884, pp. 355–359.
Springer, 1981.
- Pedersen, Jean J. Some isonemal fabrics on polyhedral surfaces. In The
Geometric Vein: The Coxeter Festschrift, ed. by Chandler Davis, Branko Grünbaum, and F. A. Sherk, pp. 99–122, Springer-Verlag, 1981.
- Hoskins, Janet A.; Hoskins, W. D. The solution of certain matrix
equations arising from the structural analysis of woven fabrics. Ars Combin. 11
(1981), 51--59.
- Hoskins, J. A. Factoring binary matrices: a weaver's approach.
in Combinatorial mathematics, IX (Brisbane, 1981), pp. 300--326, Lecture Notes in
Math., 952, Springer, Berlin-New York, 1982.
- Hoskins, J. A.; Hoskins, W. D.; Street, Anne Penfold; Stanton, R. G.
Some elementary isonemal binary matrices. Ars Combin. 13 (1982), 3--38.
- Hoskins, J. A.; Stanton, R. G.; Street, Anne Penfold. Enumerating the
compound twillins. Congr. Numer. 38 (1983), 3--22.
- Hoskins, J. A. Binary interlacement arrays and structural
cross-sections. Proceedings of the fourteenth Southeastern conference on
combinatorics, graph theory and computing (Boca Raton, Fla., 1983). Congr.
Numer. 40 (1983), 63--76.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Twills
with bounded float length. Bull. Austral. Math. Soc. 28 (1983), no. 2,
255--281.
- Hoskins, Janet A.; Praeger, Cheryl E.; Street, Anne Penfold. Balanced
twills with bounded float length. Proceedings of the fourteenth Southeastern
conference on combinatorics, graph theory and computing (Boca Raton, Fla.,
1983). Congr. Numer. 40 (1983), 77--89.
- Pedersen, Jean. Geometry: the unity of theory and practice. Math.
Intelligencer 5 (1983), no. 4, 37--49.
- Zelinka, Bohdan. Isonemality and mononemality of woven fabrics. Applications of Mathematics, 28(3) 1983, 194–198.
- Zelinka, Bohdan. Symmetries of woven fabrics. Applications of Mathematics,
29(1) 1984, 14–22.
- Enns, T. C. An efficient algorithm determining when a fabric hangs together.
Geometriae Dedicata, 15 (1984), 259–260.
- Hoskins, J. A.; Stanton, R. G.; Street, A. P. The compound twillins:
reflection at an element. Ars Combin. 17 (1984), 177--190.
- Hoskins, Janet A.; Street, Anne Penfold; Stanton, R. G. Binary
interlacement arrays, and how to find them. Proceedings of the thirteenth
Manitoba conference on numerical mathematics and computing (Winnipeg, Man.,
1983). Congr. Numer. 42 (1984), 321--376.
1985--1989
- Clapham, C. R. J. The bipartite tournament associated with a fabric.
Discrete Math. 57 (1985), no. 1-2, 195--197.
- Clapham, C. R. J. When a three-way fabric hangs together. J. Combin.
Theory Ser. B 38 (1985), no. 2, 190.
- Grünbaum, B.; Shephard, G. C. A catalogue of isonemal fabrics. Discrete Geometry and Convexity, Annals of the New York Academy of Sciences 440
(1985), 279–298.
- Grünbaum, B.; Shephard, G. C. An extension to the catalogue of
isonemal fabrics. Discrete Math. 60 (1986), 155–192.
- Delaney, Cathy. When a Fabric Hangs Together. Ars Combinatoria 21-A
(1986), 71--79.
- Hoskins, J. A.; Hoskins, W. D. An algorithm for color factoring a
matrix. Current trends in matrix theory (Auburn, Ala., 1986), 147--154,
North-Holland, New York, 1987.
- Grünbaum, B.; Shephard, G. C. Isonemal fabrics. Amer. Math. Monthly
95 (1988), 5–30.
1990--2000
- Hoskins, J. A.; Thomas, R. S. D. The patterns of the isonemal two-colour
two-way two-fold fabrics. Bull. Austral. Math. Soc. 44 (1991), no. 1, 33--43.
- Roth, Richard L. The symmetry groups of periodic isonemal fabrics. Geom.
Dedicata 48 (1993), 191–210.
- Clapham, C. R. J. The strength of a fabric. Bull. London Math. Soc. 26
(1994), no. 2, 127--131.
- Roth, Richard L. Perfect colorings of isonemal fabrics using two colors.
Geom. Dedicata 56 (1995), 307–326.
2001--2010
- Philips, Tony. Inside-out Frieze Symmetries in Ancient Peruvian
Weavings. AMS
Feature Column October 2008.
- Thomas, R.S.D. Isonemal prefabrics with only parallel axes of symmetry.
Discrete Mathematics 309 (9), 6 May 2009, 2696--2711. arXiv version
- Akleman, Ergun; Chen, Jianer; Xing, Qing; Gross, Jonathan L. Cyclic
plain-weaving on polygonal mesh surfaces with graph rotation systems. ACM
Transactions on Graphics, Proceedings of ACM SIGGRAPH 2009 28(3) August 2009,
Article No. 78.
- Thomas, R.S.D. Isonemal Prefabrics with Perpendicular Axes of Symmetry. Utilitas Mathematica, 82 (2010), 33--70. arXiv version.
- Thomas, R.S.D. Isonemal Prefabrics with No Axes of Symmetry. Discrete Mathematics 310 (2010), 1307--1324. arXiv version.
- Burkholder, Douglas G. Brunnian Weavings.
Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture (2010), pp. 263--270.
- Chen, Yen-Lin; Akleman, Ergun; Chen, Jianer; Xing, Qing. Designing Biaxial
Textile Weaving Patterns. Hyperseeing: Proceedings of ISAMA 2010, Summer 2010,
53–62.
2011--2015
- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thin striping.
Bulletin of the Australian Mathematical Society, 83, No. 1, 63-86 (2011).
- Thomas, R.S.D. Perfect colourings of isonemal fabrics by thick striping.
Bulletin of the Australian Mathematical Society,Volume 85, Issue 02 (April
2012), pp 325--349.
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thick Striping. Contributions to Discrete Mathematics. Vol 8, No 1 (2013).
- Ahmed, Abdalla G. M. AA Weaving.
Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture (2013), pp. 263--270.
- Ahmed, Abdalla G. M. Modular Duotone Weaving Design.
Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture (2014), pp. 27--34.
- Thomas, Robert S.D. Colouring Isonemal Fabrics with more than two Colours by Thin Striping. Contributions to Discrete Mathematics. Vol 9, No 2 (2014).
2016--2021
- Ahmed, Abdalla G. M.; Deussen, Oliver. Tuti Weaving, in Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, D. McKenna, K. Fenyvesi, R. Sarhangi,
49--56.
- Feijs, Loe; Toeters, Marina. A Cellular Automaton for Pied-de-poule (Houndstooth), in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C. H. Sequin, and K. Fenyvesi,
403--406.
- Ahmed, Abdalla; Deussen, Oliver. Tuti Inter-Weaving, in Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, ed. D. Swart, C. H. Sequin, and K. Fenyvesi,
229--236.
- Ahmed, Abdalla G.M.; Deussen, Oliver. Monochrome Map Weaving with Truchet-Like Tiles, in Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, ed. E. Torrence, B. Torrence, C. Sequin, and K. Fenyvesi,
45--52}.
- Ahmed, Abdalla G. M Tuti-Like Interweaving, in Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
195--202.
- Damrau, Milena. Sombrero Vueltiao---Weaving Mathematics, in Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, ed. S. Goldstine, D. McKenna, and K. Fenyvesi,
359--362.
- Akleman, Ergun; Chen, Jianer;
Gross, Jonathan L.; Hu, Shiyu. A Topologically Complete Theory of Weaving, SIAM J. Disc. Math., Vol. 34 (2020), No. 4, pp. 2457--2480.
- Holden, Joshua. Markov Chains, Coptic Bananas, and Egyptian Tombs: Generating Tablet Weaving Designs Using Mean-Reverting Processes, in Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, ed. C. Yackel, R. Bosch, E. Torrence, and K. Fenyvesi,
419--422.
- Holden, Joshua. Markov Chains and Egyptian Tombs: Generating "Egyptian" Tablet Weaving Designs Using Mean-Reverting Processes, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, ed. D. Swart, F. Farris, and E. Torrence, 165--172.
- Fukuda, Mizuki; Kotani, Motoko; Mahmoudi, Sonia. Construction and Classification of Combinatorial Weaving Diagrams. preprint 2021.
Articles appearing in nonacademic publications
sarah-marie belcastro, Adventures
in Mathematical Knitting. American Scientist, 101(2), March--April
2013, 124–133.
sarah-marie belcastro, You Do the Math. KnitNet, Winter 2001.
Brenda Dayne, Geek chic. Interweave Knits Fall 2003 pp.68--71+118. Now freely available online.
Mary Griffin, Wear Your Own Theory; A Beginner's Guide to Random Knitting.
New Scientist, March 26, 1987, pp. 69--70.
Janice Hornicek, Color By Numbers. knitsimple, Spring/Summer 2006, pp.
22--25.
Debbie New, Celluar Automaton Knitting. Knitter's Magazine Number 49, Winter
1997, pp. 82--83.
Meg Swanson, Rita Buchanan, Möbius and Möbius II. Knitter's Magazine Winter
1991, pages 38 and 49.
Rachel Thomas, Career Interview:
Fashion Designer, Plus magazine, Issue 53.
Margaret Wertheim, Crocheting the Hyperbolic Plane: An Interview with David
Henderson and Daina Taimina. Cabinet:
A Quarterly Magazine of Art & Culture Issue 16, Winter 2004. The
article is available online here. (There
are lots of articles that feature Daina's work, but this is the best one
available online.)